簡易檢索 / 詳目顯示

研究生: 施柏池
BO-CHIH SHIH
論文名稱: 串聯-串聯諧振式無線電力傳輸系統之一次側電流優化控制
Primary Current Optimization Control of Series-Series Resonant Wireless Power Transfer System
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 謝耀慶
Yao-Ching Hsieh
張佑丞
YOU-CHENG ZHANG
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 84
中文關鍵詞: 磁場耦合無線電力傳輸串聯-串聯諧振式一次側電流優化控制
外文關鍵詞: Magnetic field coupling, Wireless power transfer, Series-series resonant, Primary current optimization
相關次數: 點閱:222下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為實現一台具一次側電流優化控制之串聯-串聯諧振式無線電力傳輸轉換器,電路可應用於電動腳踏車電池充電系統。本論文首先簡單介紹不同無線功率傳輸方式的基本原理,歸納其優缺點與特性,並選用磁場耦合式作為無線電力傳輸系統。接著介紹磁共振式無線電力傳輸系統常見的電路拓樸,分析線圈繞製特性,並選用串聯-串聯諧振式電路作為主要架構來研製電路。利用等效模型分析諧振槽參數在不同工作頻率點之下的特性,說明諧振電路常見之控制方式,並因應工作頻率與選用控制法之特性來分析一次側電流值,延伸一次側電流優化控制之功能,用以改善電路操作於輕載時之效率。同時還介紹電池負載充電特性,設計控制韌體來完成定電壓、定電流充電模式,最後實作出一台200 W且具一次側電流優化控制之串聯-串聯諧振式無線電力傳輸系統,兩線圈間隔距離為20 毫米,滿載時效率可達90%,且輕載時效率確實可達到優化效果。


    This thesis focuses on realizing a series-series resonant wireless power transmission converter with primary current optimal control, and the circuit development is applied to electric bicycle battery charger. First, this thesis introduces the basic principles of different wireless power transmission methods, summarizes their characteristics, and selects the magnetic field coupling type as the wireless power transmission system, then introduces the common topology of the magnetic resonance wireless power transmission system, analyzes the characteristics of different coil winding methods, Lastly, select series-series topology as the main structure to develop the resonant circuit.
    Analyze the performance of the resonant tank parameters under different operating frequency points by the equivalent model, and introduce the common control methods, then derive the primary current value and develop the current optimal function to improve the efficiency at light loads.
    Introduce the battery load charging characteristics, design the control firmware to achieve the constant voltage and constant current charging mode, lastly, we made a 200-watt series-series resonant wireless power transmission system with optimized primary current control. The distance between the two coils is 20 mm, the efficiency can reach 90% at full load, and it optimizes the efficiency at light load.

    摘要 iii Abstract iv 致謝 v 目錄 1 圖索引 4 表索引 6 第一章 緒論 7 1.1 研究動機與目的 7 1.2 無線電力傳輸系統簡介 8 1.2.1 磁場耦合(Magnetic Field Coupling) 8 1.2.2 電場耦合(Electric Field Coupling) 9 1.2.3 微波能量傳輸 10 1.2.4 雷射能量傳輸 11 第二章 磁共振無線電力傳輸系統介紹 13 2.1 磁共振無線電力傳輸拓樸介紹 13 2.2 線圈設計考量及應用 16 第三章 串聯-串聯式無線電力傳輸系統之模型分析 19 3.1 無線電力傳輸線圈之等效模型分析 19 3.1.1 耦合電感模型 19 3.1.2 變壓器模型 20 3.1.3 兩模型之參數互換推導 21 3.2 系統增益推導 24 3.2.1 WPT系統總增益分析 24 3.2.2 耦合電感模型增益及零相位角點分析 27 3.2.3 變壓器模型增益及固定增益工作點分析 30 3.2.4 系統電感性與電容性區間 33 3.3 系統控制方式 35 3.3.1 頻率調變控制法 35 3.3.2 相移調變控制法 37 3.3.3 後置轉換器 39 第四章 一次側電流分析與優化 41 4.1 一次側電流優化介紹 41 4.1.1 電池充電曲線 42 4.1.2 一次側電流分析 43 4.1.3 優化電流工作點之選擇 45 4.2 一次側電流優化之效率改善 47 4.2.1 改善開關損耗 47 4.2.2 改善線圈損耗 48 4.2.3 改善鐵芯損耗 48 4.3 一次側電流優化控制韌體設計與流程圖 50 第五章 電路規格與參數設計 52 5.1 電路規格 52 5.2 元件參數設計流程 52 5.2.1 線圈設計 52 5.2.2 諧振電容設計 53 5.2.3 固定增益工作點設計 54 5.2.4 功率級元件設計 55 5.2.5 後置轉換器元件設計 55 5.2.6 優化電流工作點設計 56 5.3 整體系統控制韌體規劃 58 第六章 實作驗證及分析 61 第七章 結論與未來展望 71 7.1 結論 71 7.2 未來展望 71 參考文獻 73

    參考文獻
    [1] H. Ribberink and E. Entchev, “Electric vehicles —A ‘one-size-fits-all’ solution for emission reduction from transportation?,” 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, 2013, pp. 1-7.
    [2] B. Frieske, M. Kloetzke and F. Mauser, "Trends in vehicle concept and key technology development for hybrid and battery electric vehicles, " 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, 2013, pp. 1-12.
    [3] J. K. Nama, M. Srivastava and A. K. Verma, “Modified inductive power transfer topology for electrical vehicle battery charging using auxiliary network to achieve zero-voltage switching for full load variations,” IET Power Electronics, vol. 12, no. 10, 2019, pp. 2513–2522.
    [4] J. K. Nama and A. K. Verma, “An Efficient Wireless Charger for Electric Vehicle Battery Charging,” 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, 2020, pp. 1-4.
    [5] M. Granovskii, I. Dincer and M. A. Rosen, “Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles,” Journal of Power Sources, vol. 159, no. 2, 2006, pp. 1186–1193.
    [6] Y. Zhou, M. Wang, H. Hao, L. Johnson and H. Wang, “Plug-in electric vehicle market penetration and incentives: a global review,” Mitigation and Adaptation Strategies for Global Change, vol. 20, no. 5, 2015, pp. 777– 795.
    [7] G. A. Covic and J. T. Boys, “Inductive Power Transfer,” in Proceedings of the IEEE, vol. 101, no. 6, pp. 1276-1289, June 2013.
    [8] F. Musavi and W. Eberle, “Overview of Wireless Power Transfer Technologies for Electric Vehicle Battery Charging,” in IET Power 65 Electronics, vol. 7, no. 1, pp. 60-66, January 2014.
    [9] 林楗能,「8 kW電動車無線功率傳輸系統之研製」,國立台灣科技大學電子工程系碩士論文,2020年
    [10] A. Satyamoorthy, P. Riehl, H. Akram, Y. C. Yen, J. C. Yang, B. Juan, C. M. Lee, F. C. Lin, "Wireless power receiver for mobile devices supporting inductive and resonant operating modes," 2014 IEEE Wireless Power Transfer Conference, Jeju, 2014, pp. 1-4.
    [11] R. Haldi and K. Schenk, “A 3.5 kW Wireless Charger for Electric Vehicles with Ultra High Efficiency,” Energy Conversion Congress and Exposition (ECCE), 2014 IEEE, Pittsburgh, PA, 2014, pp. 668- 674.
    [12] W. Zhiwei, W. Yi, S. Junjie, Y. Zhongping, L. Fei, L. Ming, L. Nan, Z. Jinxiao and Y. Ting, "A 600kW Wireless Power System for Modern Tram," 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Korea, 2020 , pp. 1-4
    [13] A. Muharam, S. Ahmad, R. Hattori, A. Hapid, "13.56 MHz Scalable Shielded-Cpacitive Power Transfer for Electric Vehicle Wireless Charging," 2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Korea, 2020, pp. 1-6
    [14] C. Y. Xia, C. W. Li and J. Zhang, “Analysis of Power Transfer 66 Characteristic of Capacitive Power Transfer System And Inductively Coupled Power Transfer System,” 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, 2011, pp. 1281-1285.
    [15] H. Funato, H. Kobayashi and T. Kitabayashi, “Analysis of Transfer Power of Capacitive Power Transfer System,” 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS), Kitakyushu, 2013, pp. 1015-1020.
    [16] H. Matsumoto, “Research on Solar Power Satellites and Microwave Power Transmission in Japan,” in IEEE Microwave Magazine, vol. 3, no. 4, December 2002, pp. 36-45.
    [17] K. Lee, J. Kim, C. Cha, "Microwave-based Wireless Power Transfer using Beam Scanning for Wireless Sensors, "IEEE EUROCON 2019 -18th International Conference on Smart Technologies, Novi Sad, 2019, pp. 1-5
    [18] S. D. Jarvis, J. Mukherjee, M. Perren and S. J. Sweeney, “Development and Characterisation of Laser Power Converters for Optical Power Transfer Applications,” in IET Optoelectronics, vol. 8, no. 2, April 2014, pp. 64- 70.
    [19] K. Jin, W. Zhou, "Wireless Laser Power Transmission:A Review of Recent Progress," IEEE Transactions on Power Electronics, vol. 34, no. 4, 2018, pp. 3842-3859
    [20] C. S. Wang, O. H. Stielau and G. A. Covic, “Design Considerations For a Contactless Electric Vehicle Battery Charger,” in IEEE Transactions on Industrial Electronics, vol. 52, no. 5, October 2005, pp. 1308-1314.
    [21] 尤哲偉,「串聯-串聯諧振式無線電力傳輸系統之相移控制」,國立台灣科技大學電子工程系碩士論文,2021年
    [22] C. Fang, J. Song, L. Lin and Y. Wang, “Practical considerations of series-series and series-parallel compensation topologies in wireless power transfer system application,” 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, 2017, pp. 255-259.
    [23] M. A. Houran, X. Yang and W. Chen, “Magnetically Coupled Resonance WPT: Review of Compensation Topologies, Resonator Structures with Misalignment, and EMI Diagnostics,” MDPI Electronics, vo. 7, no. 11, 2018, pp. 4-9.
    [24] E. G. Shehata, “Design of high efficiency low frequency wireless power transfer system for electric vehicle charging,” SPRINGER Electrical Engineering, vol. 104, 2021, pp. 1797-1809.
    [25] Pevere, R. Petrella, C. C. Mi and Shijie Zhou, “Design of a high efficiency 22 kW wireless power transfer system for EVs fast contactless charging stations,” 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, 2014, pp. 1-7.
    [26] Z. U. Zahid et al., “Modeling and Control of Series–Series Compensated Inductive Power Transfer System,” in IEEE Journal of 68 Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, March 2015, pp. 111-123.
    [27] ]C. Zheng et al., “High-Efficiency Contactless Power Transfer System for Electric Vehicle Battery Charging Application,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, March 2015, pp. 65-74.
    [28] S. Bandyopadhyay, P. Venugopal, J. Dong, P. Bauer, "Comparison of Magnetic Couplers for IPT-Based EV Charging Using Multi-Objective Optimization, "IEEE Transactions on Vehicular Technology, vol.68, no.6, 2019, pp. 5416-5429
    [29] W. Zhang, S. C. Wong, C. K. Tse and Q. Chen, “Load-Independent Duality of Current and Voltage Outputs of a Series- or ParallelCompensated Inductive Power Transfer Converter With Optimized Efficiency,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 137-146, March 2015.
    [30] C. Zhao, Z. Wang, J. Du, J. Wu, S. Zong, X. He, “Active resonance wireless power transfer system using phase shift control strategy,” 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, 2014, pp. 1-6
    [31] K.N. Mude, K. Aditya, “Comprehensive review and analysis of two-element resonant compensation topologies for wireless inductive power transfer systems,” Chinese Journal of Electrical Engineering, vol.5, no.2, 2019, pp. 14-31
    [32] C. Fang, J. Song, L. Lin, Y. Wang, “Practical considerations of series-series and series-parallel compensation topologies in wireless power transfer system application,” 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Chongqing, 2017, pp. 1-5
    [33] 吳義利,切換式電源轉換器:原理與實用設計技術(實例設計導向),高雄市:吳義利出版,2018年,第6-7至6-24頁。
    [34] Y. Zhou and A. M. Sun, “Simplified ferrite core loss separation model for switched mode power converter,” IET Power Electronics, vol. 9, no. 3, 2016, pp. 529–535.
    [35] H. Zhao et al., "An Improved Core Loss Model of Ferromagnetic Materials Considering High-Frequency and Nonsinusoidal Supply," in IEEE Transactions on Industry Applications, vol. 57, no. 4, July-Aug. 2021, pp. 4336-4346.

    QR CODE