簡易檢索 / 詳目顯示

研究生: 張雅婷
Ya-Ting Chang
論文名稱: 非接觸式介質量測系統與生理參數感測雷達教學實驗模組設計
Design of Noncontact Permittivity Measurement System and Vital-sign Radar Teaching Modules
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 林丁丙
none
楊成發
Chang-Fa Yang
瞿大雄
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 58
中文關鍵詞: 介質量測無線傳能生理參數感測
外文關鍵詞: permittivity, wireless power transfer, doppler radar
相關次數: 點閱:297下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要係研製一型應用於複數介電常數量測之非接觸式介質量測系統及一型應用於人體吸呼及心跳量測之非接觸式雷達教學模組。非接觸式介質量測系統係以無線傳能原理,於固定耦合距離條件下,設計平面式線圈共振器,藉由線圈磁耦合共振達到非接觸式能量傳遞。將線圈連接至雙埠向量網路分析儀,且分別量測空置及放置待測物之系統雙埠散數參數,擷取變化量,用以計算待測物之複數介電常數。量測實驗則可分為單一待測物及雙介質量測。單一待測物量測分別以平面基板及立體介質圓柱進行實驗,雙介質量測同時使用兩組不同材質之平面基板進行實驗。生理參數感測雷達教學模組則是基於都卜勒原理,以市售積體電路、微帶線天線及射頻被動電路實現之大學部「射頻模組實習」課程教材。此雷達感測模組之操作頻率為2.5 GHz,模組與人體量測距離約為50 cm,其心跳量測結果與市售醫療級血氧濃度計之量測結果比較,誤差可控制在每分鐘1次內,誤差百分比為1.33 %。


    This thesis presents a non-contact permittivity measurement system and a non-contact vital-sign sensor radar for human’s respiration and heartbeat detection. The developed permittivity measurement system based on the principle of wireless power transfer is mainly composed of two strongly coupled planar loop resonators, which transfer power by the mutual magnetic coupling at a fixed separated distance. In the measurement setup, two loop resonators are respectively connected to port 1 and port 2 of the vector network analyzer to acquire two- port scattering parameters with and without the subject under test (SUT), and then the complex dielectric constant can be determined by calculating the difference of two sets of measured parameters. To demonstrate the proposed system, two types of planar substrate and a dielectric cylinder are chosen as the SUTs to perform the tests with single SUT or simultaneous two SUTs.
    The developed sensing radar module based on the Doppler principle includes radio- frequency (RF) ICs, passive components, microstrip antennas and baseband circuits. The aim of the radar module is to develop teaching materials for “radio frequency module laboratory”. The radar module is designed at 2.5 GHz. Under a measurement distance of 50 cm, the measured error of the heartbeat rate of the developed radar module is controlled under 1 time per minute, namely a relative error of 1.33 % as compared with the result measured by a medical finger pulse oximeter.

    摘要 Abstract 目錄 第一章 緒論 1-1 研究動機與文獻探討 1-2 非接觸式介質量測簡介 1-3 非接觸式生理參數感測雷達簡介 1-4 章節說明 第二章 非接觸式介質量測系統與驗證 2-1線圈共振器研製 2-2 介質量測系統與驗證 2-2-1 使用穿透係數之介質量測實驗 2-2-2 使用雙埠散射係數之介質量測實驗 第三章 非接觸式生理參數感測雷達教學實驗模組設計 3-1 雷達模組元件特性 3-1-1 壓控震盪器 3-1-2 緩衝放大器 3-1-3 功率分配器 3-1-4 混波器 3-1-5 低雜訊放大器 3-1-6 發射端與接收端天線設計 3-1-7 基頻放大器 3-2 雷達模組鏈路估算與實驗 3-2-1 雷達模組鏈路估算 3-2-2 非接觸式生理參數量測實驗與結果 第四章 結論 參考文獻

    [1]Keysight Technologies E4991B Impedance Analyzer [online] Available: http://literature.cdn.keysight.com/litweb/pdf/5991-3892EN.pdf?id=2462951
    [2]Keysight Technologies 85070E介電測試探棒套件 [online] Available: http://www.keysight.com/zh-TW/pd-304506-pn-85070E/dielectric-probe-kit?nid=-536902477.536883502&cc=TW&lc=cht
    [3]J. M. Catalá-Civera, A. J. Canós, F. L. Penaranda-Foix, and E. de los Reyes Davó, “Accurate determination of the complex permittivity of materials with transmission reflection measrements in partially filled rectangular waveguides,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 16-24, Jan. 2003.
    [4]J. Krupka, W. Gwarek, N. Kwietniewski, and J. G. Hartnett, “Measurements of planar metal-dielectric structures using split-post dielectric resonators,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, Dec. 2010.
    [5]A. Rashidian, M. T. Aligodarz, and D. M. Klymyshyn, “Dielectric characterization of materials using a modified microstrip ring resonator technique,” IEEE Trans. Dielectr. Electr. Insulat. vol. 19, no. 4, Aug. 2012.
    [6]F. Shen, Y. Salamin, J. Dong, Y. Sun, J. Huangfu, C. Li, and L. Ran, “Noncontact measurement of complex permittivity based on the principle of mid-range wireless power transfer,” IEEE Trans. Microw. Theory Tech., vol. 62, pp. 669-678, Mar. 2014.
    [7]B. B. Tierney and A. Grbic, “Design of self-matched planar loop resonators for wireless nonradiative power transfer,” IEEE Trans. Microw. Theory. Tech., vol. 62, pp. 909-919, Apr. 2014.
    [8]穿戴式裝置應用產業發展趨勢 [online] Available: https://www.taiwanjobs.gov.tw/internet/index/docDetail_frame.aspx?uid=1590&pid=230&docid=28603&nohotkey=Y
    [9]W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microw. Theory. Tech., vol. MTT-32, no. 9, pp. 1230-1242, Sep. 1984.
    [10]N. Telsa, “Apparatus for transmission of electric energy,” U. S. Patent 645, 576, May 15, 1900.
    [11]A. Boaventura, A. Collado, N. B. Carvalho, and A. Georgiadis, “Optimum behavior,” IEEE Microw. Mag., vol. 14, pp. 26-35, Mar./ Apr. 2013.
    [12]Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system,” IEEE Trans. Ind. Electron., vol.56, no. 5, pp. 1801-1812, May 2009.
    [13]J. J. Casanova, Z. N. Low, J. Lin, and R. Tseng, “Transmitting coil achieving uniform magnetic field distribution for planar wireless power transfer system,” IEEE Radio Wireless Symp., 2009, pp. 530-533.
    [14]J. Garnica, R. A. Chinga, and J. Lin, “Wireless power transmission from far field to near field,” in Proc. IEEE, vol. 101, no. 6, pp. 1321-1331, Jun. 2013.
    [15]MIT WiTricity Press Release [online] Available: http://www.mit.edu/~soljacic/MIT_WiTricity_Press_Release.pdf
    [16]A. Droitcour, V. Lubecke, J. Lin, O. Boric-Lubecke, “A microwave radio for Doppler radar sensing of vital signs,” IEEE MTT-S Digest, 2001, vol. 1, pp. 175-178.
    [17]C. Li, and J. Lin, “Random body movement cancellation in doppler radar vital sign detection,” IEEE Trans. Microw. Theory. Tech., vol. 56, no. 12, pp. 3143-3152, Dec. 2008.
    [18]A. Singh, and V. M. Lubecke, “Respiratory monitoring and clutter rejection using a CW doppler radar with passive RF tags,” IEEE Sensors J., vol. 12, no. 3, pp. 558-565, Mar. 2012.
    [19]B. B. Tierney, and A. Grbic, “Planar shielded-loop resonator,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 3310-3320, Jun. 2014.
    [20]E. Thomas, J. D. Heebl, C. Pfeiffer, and A. Grbic, “A power link study of wireless non-radiative power transfer systems using resonant shielded loops,” IEEE Trans. Circuit Syst. I, Reg. Papers, vol. 59, no. 9, pp. 345-352, 2012.
    [21]J. A. Kong, Electromagnetic Wave Theory. New York, NY, USA: Wiley, 1986.
    [22]B. A. Auld, and J. C. Moulder, “Review of advances in quantative eddy current nondestructive evaluation,” J. Nondestruct. Eval., vol. 18, no. 1, pp. 3-36, Mar. 1999.
    [23]E. Hammerstad, and O. Jensen, “Accurate models for microstrip computer-aided design,” in IEEE MTT-S Int. Micr. Symp. Dig., May 1980, pp. 407-409.
    [24]G. Zou, H. Gronqvist, J. P. Starski, and J. Liu, “Characterization of liquid crystal polymer for high frequency system-in-a-package applications,” IEEE Trans. Adv. Packag., vol. 25, pp. 503-508, Nov. 2002.
    [25]D. C. Thompson, O. Tantot, H. Jallageas, G. E. Ponchak, M. M. Tentzeris, and J. Papapolymerou, “Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 1343-1352, Apr. 2004.
    [26]P. M. Narayanan, “Microstrip transmission line method for broadband permittivity measurement of dielectric substrates,” IEEE Trans. Microw. Theory Tech., vol. 62, pp. 2784-2790, Nov. 2014.
    [27]M. D. Janezic and J. A. Jargon, “Complex permittivity determination from propagation constant measurements,” IEEE Microw. Guided Wave Lett., vol. 9, pp. 76-78, Feb. 1999.
    [28]RO4000® Series High Frequency Circuit Materials RO4003C Data Sheet, Rogers Corporation, USA, [online] Available: https://www.rogerscorp.com/documents/726/acm/RO4000-Laminates---Data-sheet.pdf
    [29]RO4725JXR™ & RO4730JXR™ Antenna Grade Laminates RO4725JXR Data Sheet, Rogers Corporation, USA, [online] Available: https://www.rogerscorp.com/documents/1414/acs/RO4725JXR-RO4730JXR-Antenna-Grade-Laminates-Data-Sheet.pdf
    [30]V. C. Chen, The Micro-Doppler Effect in Radar. Artceh House, Norwood, MA, 2011.
    [31]C. Li, V. M. Lubecke, O. Boric-Lubecke, J. Lin, “A review on recent advances in doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory Tech., vol. 61, pp. 2046-2060, 2013.
    [32]Mini-circuits Voltage Controlled Oscillator ROS-2700+ Data Sheet, Mini-circuits RF/Microwave Components & Systems [online] Available: http://www.minicircuits.com/pdfs/ROS-2700+.pdf
    [33]Mini-circuits Monolithic Amplifier ERA-33SM+ Data Sheet, Mini-circuits RF/Microwave Components & Systems [online] Available: http://www.minicircuits.com/pdfs/ERA-33SM+.pdf
    [34]Mini-circuits High Reliability Mixer ADE-R3GLH+ Data Sheet, Mini-circuits RF/Microwave Components & Systems [online] Available: http://www.minicircuits.com/pdfs/ADE-R3GLH+.pdf
    [35]Mini-circuits Low Noise Amplifier TAMP-272LN+ Data Sheet, Mini-circuits RF/Microwave Components & Systems [online] Available: http://www.minicircuits.com/pdfs/TAMP-272LN+.pdf
    [36]Texas Instruments, Low Dropout Regulator LM1117 Data Sheet, Texas Instruments Inc., Texas, USA [online] Available: http://www.ti.com/lit/ds/symlink/lm1117-n.pdf

    QR CODE