簡易檢索 / 詳目顯示

研究生: 葉柏辰
Po-Chen Yeh
論文名稱: 利用LQG控制實現具基座激振之懸臂樑的多模態振動控制
Study on Multimode Vibration Control of a Cantilever Beam with Base Excitation by Using LQG Control
指導教授: 郭永麟
Yong-Lin Kuo
口試委員: 郭永麟
Yong-Lin Kuo
楊振雄
YANG ZHEN XIONG
郭鴻飛
KUO HONG FEI
陳亮光
CHEN LIANG GUANG
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 135
中文關鍵詞: 懸臂樑多模態主動振動控制卡曼濾波器線性二次調節器
外文關鍵詞: Multimode of cantilever beam, Active control, Kalman filter, Linear quadratic regulator
相關次數: 點閱:175下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在許多產業中都有懸臂樑結構的應用,在工作環境中難免會有許多外在因
素的干擾,這些干擾可能造成懸臂樑的振動,影響其工作效率與精度,因此許
多學者研究如何利用主動控制的方式抑制振動。壓電材料是主動控制元件最常
見的一種,有響應快、能量轉換率高等特點,非常適合當作感測器與制動器使
用,許多學者在此研究領域中利用壓電材料結合不同控制方法,研究個理論抑
振的效果及優缺點。
當外部干擾使懸臂樑產生振動時,其產生的振動效應是由第一共振模態至
無窮共振模態的總和,且產生的振動隨模態遞增而遞減,因此多數學者在懸臂
樑建模時,只考慮第一與第二共振模態,但實際上干擾可能引起其餘共振模態
的振動,若用使用此模型設計控制器控制效果有限,因此將懸臂樑考慮越多模
態並以此設計控制器越能近似實際懸臂樑振動情況,並增加控制效果。
本論文使用激振器產生一干擾訊號同時引起懸臂樑第一到第四共振模態的
振動,在懸臂樑建模時考慮第一到第四個共振模態,結合卡曼濾波器與線性二
次調節器(Linear Quadratic Regulator, LQR),分別使用一到四對壓電片感測器與制動器抑振系統,並利用實驗驗證模擬結果。限制控制電壓小於20 v且同時有四種共振頻率干擾的環境下,利用四對壓電片感測器與制動器以兩不同電壓控制,模擬可以達到36.8%的抑振效果,實驗可以則可達到23.4%抑振效果。


It is common to see cantilever beam structures applied in industry. When some disturbances appear in environment, they will cause cantilever beam vibrations and sometimes will affect productivities. Due to this reason, many experts studied how to suppress the vibrations using active control. Piezoelectric material is a common component with fast responses and high energy-conversion rates. Thus, this study uses the material to be sensors and actuators.
The vibration of the cantilever beam can be regarded as the sum of model vibrations and the vibration amplitudes decreases as the mode number increases. Therefore, many experts only assume the first and second mode to design the controller. Actually, the disturbance might cause the vibrations excited by higher modes. Accordingly, the more modes are considered in modeling, the more similar to an actual cantilever beam system the model is, so the designed controller has better performances.
In this thesis, a shaker is used to generate the first four model vibrations, and the first four modes are considered to design the Kalman filter and the linear quadratic regulator. Different combinations of piezoelectric sensors and actuators are considered to suppress the vibrations. The simulation and the experiment results show that four pairs of piezoelectric sensors and piezoelectric actuators with two different voltages have 36.5% of suppressions in simulation results and 23.4% of suppressions in experimental results.

摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 單模態抑振控制 2 1.2.2 多模態抑振控制 3 1.3 研究動機 5 1.4 研究方法 5 1.5 研究貢獻 6 1.6 論文架構 7 第二章 懸臂樑建模與控制 8 2.1 懸臂樑與壓電片簡介 8 2.2 懸臂樑模型建立與分析 8 2.2.1 懸臂樑模型 8 2.2.2 懸臂樑模態分析 10 2.2.3 懸臂樑模態正交性推導 12 2.2.4 懸臂樑模態 13 2.3 壓電片感測器與致動器模型 14 2.3.1 壓電材料特性 14 2.3.2 壓電片結合懸臂樑動態分析 15 2.3.3 壓電片感測器模型 16 2.3.4 壓電片致動器模型 17 2.4 外部干擾下壓電片樑系統動態分析 19 2.5 LQG控制 21 2.5.1 卡爾曼估測器 22 2.5.2 線性二次調節器 23 2.6 實驗模型 24 第三章 實驗規劃 29 3.1 實驗設計 29 3.2 實驗系統設備 30 3.2 實驗架構 35 3.3 電路架構 36 3.4 激振器建模 37 3.5 壓電片電壓測試 39 3.6 共振模態實驗分析 39 3.7 共振阻尼實驗分析 40 3.8 共振模型參數修正 43 3.8.1 壓電感測器係數修正 44 3.8.2 重力項係數修正 50 3.8.3 壓電制動器係數修正 51 第四章 模擬與實驗結果 53 4.1第一共振模態干擾 55 4.1.1 Case 1-1 55 4.1.2 Case 1-2 58 4.1.3 Case 1-3 61 4.1.4 Case 1-4 64 4.1.5 Case 1-5 67 4.1.6 Case 1-6 70 4.2第一與第二共振模態干擾 72 4.2.1 Case 2-1 72 4.2.2 Case 2-2 76 4.2.3 Case 2-3 80 4.2.4 Case 2-4 84 4.2.5 Case 2-5 88 4.2.6 Case 2-6 92 4.3第一至第四共振模態干擾 94 4.3.1 Case 3-1 94 4.3.2 Case 3-2 98 4.3.3 Case 3-3 102 4.3.4 Case 3-4 106 4.3.5 Case 3-5 110 4.3.6 Case 3-6 114 4.4 結果整理與比較 117 第五章 結論與建議 120 5.1 結論 120 5.2 未來研究方向 121 參考文獻 122

[1] A. Arnau, “Piezoelectric Transducers and Applications,” 2nd ed., NY, USA, Springer, 2004.
[2] J. R. Hutchinson, “Shear coefficients for Timoshenko beam theory,” Transactions of the ASME, vol. 1, no. 68, pp. 87-91, 2001.
[3] E. F. Crawley, J. D. Luis, “Use of piezoelectric actuators as elements of intelligent structures,” AIAA Journal , vol. 25, no. 10, pp. 1373-7385, 1987.
[4] E. F. Crawley, E. H. Anderson, “Detailed models of piezoceramic actuation of beams,” Journal of Intelligent Material Systems and Structures, vol. 1, no. 1, pp. 4-25, 1990.
[5] C. M. A. Vasques, J. D. Rodrigues, “Active vibration control of a smart beam through piezoelectric actuation and laser vibrometer sensing: simulation, design and experimental implementation,” Smart Materials and Structures, vol. 16, no. 2, pp. 305-316, 2007.
[6] Y. Wang, D. J. Inman, “Finite element analysis and experimental study on dynamic properties of a composite beam with viscoelastic damping,” Journal of Sound and Vibration, vol. 23, no. 332, pp. 6177-6191, 2013.
[7] A. P. Parameswaran, K. V. Gangadharan, “Active vibration control of a smart cantilever beam at resonance: A comparison between conventional and real time control,” Intelligent Systems Design and Applications (ISDA), Cordoba, Spain, 2012
[8] M. M. Jovanovic, A. M. Simonovic, N. D. Zoric, N. S. Lukic, S. N. Stupar, S. S. Ilic, “Experimental studies on active vibration control of a smart composite beam using a PID controller,” Smart materials and structures, vol. 11, no. 22, 2013, DOI: 10.1088/0964-1726/22/11/115038
[9] S. Kumar, R. Srivastava, R. K. Srivastava, “Active vibration control of smart piezo cantilever beam using pid controller,” International Journal of Research in Engineering and Technology, vol. 3, no. 1, pp. 392-399, 2014.
[10] J. L. Fanson, T. K. Caughey, “Positive position feedback control for large space structures,” AIAA journal, vol. 4, no. 28, pp. 717-724, 1990.
[11] J. Fei, “Active vibration control of a flexible structure using piezoceramic actuators,” Sensors and Transducers, vol. 3, no. 89, pp. 52-60, 2008.
[12] C.M.A. Vasques, J. D. Rodrigues, “Active vibration control of smart piezoelectric beams: comparison of classical and optimal feedback control strategies,” Computers & structures, vols. 22-23, vol. 84, pp. 1402-1414, 2006.
[13] Y. Fang, J. Fei, T. Hu, “Adaptive backstepping fuzzy sliding mode vibration control of flexible structure, ”Journal of Low Frequency Noise, Vibration and Active Control, vol. 4, no. 37, pp. 1079-1096, 2018.
[14] M. Gulan, G. Takács, N. A. Nguyen, S. Olaru, P. Rodríguez-Ayerbe, B. Rohal’-Ilkiv, “Efficient embedded model predictive vibration control via convex lifting,” Transactions on Control Systems Technology, vol. 27, no. 1, pp. 48-62, 2019.
[15] B. Lu, Z. Guo, Y. Liu, G. Qian, L. Xu, G. Li “Self-Sensing vibration suppression of piezoelectric cantilever beam based on improved mirror circuit,” IEEE Access, vol. 7, pp. 148381-148392, 2019.
[16] I. R. Petersen, H. R. Pota, “Minimax LQG optimal control of a flexible beam,” Control Engineering Practice, vol. 11, no. 11, pp. 1273-1287, 2003.
[17] K. R. Kumar, S. Narayanan, “Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs,” Smart Materials and Structures, vol. 5, no. 17, 2008. DOI:10.1088/0964-1726/17/5/055008
[18] S. K. Vashist, “Optimal placement of piezoelectric actuators on plate structures for active vibration control using genetic algorithm,” International Society for Optics and Photonics, San Diego, United States, vol. 9057, 2014.
[19] N. D. Zoric, A. M. Simonovic, Z. S. Mitrovic, S. N. Stupar, “Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation,” Journal of Intelligent Material Systems and Structures, vol. 4, no. 24, pp. 499-526, 2013.
[20] C. Y. Lin, Y. H. Huang, W. T. Chen, “Multimodal suppression of vibration in smart flexible beam using piezoelectric electrode-based switching control,” Mechatronics, vol. 53, pp. 152-167, 2018.
[21] Z. C. Qiu, J. D. Han, X. M. Zhang, Y. C. Wang, Z. W. Wu, “Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator,” Journal of Sound and Vibration, vols. 3-5, no. 326, pp. 438-455, 2009.
[22] A. P. Parameswaran, B. Ananthakrishnan, K. V. Gangadharan, “Design and development of a model free robust controller for active control of dominant flexural modes of vibrations in a smart system,” Journal of Sound and Vibration, vol. 355, pp. 1-18, 2015.
[23] M. Kant, A. P. Parameswaran, “Modeling of low frequency dynamics of a smart system and its state feedback based active control,” Mechanical Systems and Signal Processing, vol. 99, pp. 774-789, 2018.
[24] V. Sethi, G. Song, “Multimodal vibration control of a flexible structure using piezoceramic sensor and actuator,” Journal of Intelligent Material Systems and Structures, vol. 19, no. 5, pp. 573-582, 2008.
[25] S. M. Kim, M. J. Brennan, “Active vibration control using delayed resonant feedback,” Smart Materials and Structures, vol. 9, no. 22, 2013. DOI:10.1088/0964-1726/22/9/095013

[26] K. A. Alhazza, A. Nayfeh, M. F. Daqaqc, “On utilizing delayed feedback for active-multimode vibration control of cantilever beams,” Journal of Sound and Vibration, vols. 3-5, no. 319, pp. 735-752, 2009.
[27] D. F. Wu, L. Liang, B. Pan, Y. Wang, S. Wu, “Experimental study and numerical simulation of active vibration control of a highly flexible beam using piezoelectric intelligent material,” Aerospace Science and Technology, vol. 37, pp. 10-19, 2014.
[28] E. Omidi, S. N. Mahmoodi, W. S. Shepard, “Multi positive feedback control method for active vibration suppression in flexible structures,” Mechatronics, vol. 33, pp. 23-33, 2016.
[29] E. Omidi, S. N. Mahmoodi, “Multimode modified positive position feedback to control a collocated structure,” Journal of Dynamic Systems, Measurement, and Control, vol. 5, no. 137, 2015. DOI: 10.1115/1.4029030
[30] E. Omidi, S. N. Mahmoodi, “Vibration control of collocated smart structures using modified positive position and velocity feedback,” Journal of Vibration and Control, vol. 10, no. 22, pp. 2434-2442, 2016.
[31] Y. Xiel, H. Shi, F. Bi, J. Shi, “A MIMO data driven control to suppress structural vibrations,” Aerospace Science and Technology, vol. 77, pp. 429-438, 2018.
[32] E. Omidi, N. Mahmoodi, “Hybrid positive feedback control for active vibration attenuation of flexible structures,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 20, pp. 1790-1797, 2014.
[33] J. Z. Yue, Q. Zhu, “Active vibration control of piezoelectricity cantilever beam using an adaptive feedforward control method,” Data Driven Control and Learning Systems (DDCLS), Chongqing, China, 2017.
[34] S. S. Djokoto, E. Dragasius, V. Jurenas, M. A. Chaab, “Controlling of Vibrations in Micro-Cantilever Beam Using a Layer of Active Electrorheological Fluid Support,” IEEE Sensors Journal. vol. 20, no. 8, pp. 4072-4079, 2019.
[35] Y. Huang, Y. Zhou, X. Zhu, X. Li, Z. Gao, “Multiple model switching Fx-VSSLMS algorithm for active vibration control of flexible cantilever beam with varying load,” Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 2019.
[36] 張志銘,“混合式智能控制於壓電樑之主動式抑振研究”,碩士論文,國立臺灣科技大學機械工程系,2011年。
[37] S. Le, “Active vibration control of a flexible beam”, Master's Thesis, San Jose State University, 2009.
[38] C. K. Chui, G. Chen, “Kalman Filtering with Real-Time Applications“, 4nd ed., NY, USA, Springer, 2009.
[39] J. Fei, “Active vibration control of flexible steel cantilever beam using piezoelectric actuators“, Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, vol. 5, pp. 35-39, 2009.

無法下載圖示 全文公開日期 2025/08/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE