簡易檢索 / 詳目顯示

研究生: 周雅貞
Ya-Zhen Zhou
論文名稱: 雙驅動系統之線性二次追跡結合路徑規劃控制器設計
Linear Quadratic Tracking Controller with Path Planning Design for Dual Stage Actuator system
指導教授: 張以全
I-Tsyuen Chang
口試委員: 梁國淦
Kuo-Kan Liang
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 91
中文關鍵詞: 雙驅動系統最佳控制線性二次追跡路徑規劃飽和問題
外文關鍵詞: DSA system, Optimal control, LQT, Path Planning design, Saturation problem
相關次數: 點閱:388下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要探討雙驅動系統的線性二次追跡(Linear Quadratic Tracking)結合路徑規劃(Path Planning)的控制器設計,使其達到長行程高精度的定位需求並且避免飽和問題的產生。本文首先推導雙驅動系統(Dual-Stage Actuator system)之數學模型,接著將本文之數學模型以Smith-McMillan Form表示,並討論雙驅動系統之特性。根據所討論之模型,利用最佳控制方法中之線性二次追跡,使雙驅動系統達到期望之點到點(Point to Point)追蹤軌跡。然而雙驅動系統之間的耦合問題及其不同響應特性可能會造成其產生飽和問題(Saturation problem),故本文利用路徑規劃設計,以限制雙驅動器間之最大相對距離,由此,可同時達到追跡之需求並且避免飽和問題之產生。本文以模擬結果驗證所提出之控制器設計方法的有效性,並且提供結論與討論未來研究之方向。


This thesis mainly discusses the controller design of Linear Quadratic Tracking (LQT) and the path planning for a Dual Stage Actuator (DSA) system. With the proposed method, it allows the DSA system to achieve long stroke precision positioning. Besides, it prevents the saturation problem. First, the mathematical model derivation of the DSA system is presented. Next, apply the Smith-McMillan form on the DSA model to analyze the characteristics of the DSA system. After that, according to the analyzed DSA system model, design the LQT state feedback controller to track the point to point reference trajectory. However, the couple effect and the different characteristics between the two actuators may cause the saturation problem. Therefore, this thesis applies the path planning design to restrict the relative distance between the two actuators. With the proposed method, the trajectory tracking and the prevention of the saturation problem can be achieved simultaneously.This thesis proves the proposed method with the simulation results, and provides the conclusions and the future works.

Abstract in Chinese.................................. I Abstract in English .................................. II Acknowledgements.................................. III Contents........................................ IV List of Figures..................................... VII List of Tables ..................................... XI List of abbreviation .................................. XII 1 Introduction.................................... 1 1.1 Introduction to Dual Stage Actuator .................... 1 1.2 Background................................. 3 1.3 Literature Review.............................. 5 1.4 Optimal control............................... 10 1.4.1 Cost Function............................ 11 1.4.2 Positive Definite (PD) and Positive Semi-definite (PSD) . . . . . 12 1.4.3 Hamiltonian............................. 13 1.4.4 Boundary Conditions for Different System . . . . . . . . . . . . 14 1.4.5 Backstepping............................ 15 1.4.6 Linear Quadratic Regulator (LQR)................. 16 1.4.7 Linear Quadratic Tracking (LQT) ................. 18 2 DSA System Modeling .............................. 21 2.1 Mathematical Model Derivation ...................... 21 2.2 The Explanation of Transfer Functions................... 25 2.3 DSA Parameter Analysis .......................... 26 2.4 Poles and Zeros of DSA Model....................... 31 3 Feedback Controller Design............................ 35 3.1 Feedback Control Scheme of DSA System................. 35 3.2 Linear Quadratic Tracking Feedback controller . . . . . . . . . . . . . . 36 3.2.1 Hamiltonian............................. 37 3.2.2 Open-Loop Optimal Control, State System and Co-State System . 37 3.2.3 Boundary Condition ........................ 39 3.2.4 Riccati Equation and Vector Equation . . . . . . . . . . . . . . . 39 3.2.5 Closed-Loop Optimal control and Optimal State . . . . . . . . . 41 3.3 Reference Path Planning .......................... 41 4 Simulation Results................................. 43 4.1 Parameters of DSA System......................... 43 4.2 Parameters of LQT Feedback Controller.................. 44 4.3 LQT Feedback controller Without Path Planning Design . . . . . . . . . 45 4.4 LQT Feedback controller With Path Planning Design . . . . . . . . . . . 50 4.5 A Different Original Reference trajectory for LQT Feedback controller Without Path Planning Design ....................... 53 4.6 A Different Original Reference for LQT Feedback controller With Path Planning Design............................... 58 4.7 Stability of LQT Feedback Controller ................... 61 5 Conclusion and Future Work ........................... 63 5.1 Conclusion ................................. 63 5.2 Future Work................................. 64 References....................................... 65 Appendix A:DSA Model s-domain Derivation ................... 68 Appendix B:DSA Model State Space Form Derivation . . . . . . . . . . . . . . . 71 Appendix C:Smith-McMillan Form ......................... 73

[1] R. Horowitz, Y. Li, K. Oldham, S. Kon, and X. Huang, “Dual-stage servo systems and vibration compensation in computer hard disk drives,” Control Engineering Practice, vol. 15, no. 3, pp. 291– 305, 2007.
[2] K.Peng,B.M.Chen,T.H.Lee,andV.Venkataramanan,“Designandimplementationofadual-stage actuated hdd servo system via composite nonlinear control approach,” Mechatronics, vol. 14, no. 9, pp. 965–988, 2004.
[3] T. Tuma, W. Haeberle, H. Rothuizen, J. Lygeros, A. Pantazi, and A. Sebastian, “Dual-stage nanopo- sitioning for high-speed scanning probe microscopy,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 3, pp. 1035–1045, 2014.
[4] S.Ito,J.Steininger,andG.Schitter,“Low-stiffnessdualstageactuatorforlongragepositioningwith nanometer resolution,” Mechatronics, vol. 29, pp. 46–56, 2015.
[5] S. Ito, J. Steininger, P. I. Chang, and G. Schitter, “High-precision positioning system using a low- stiffness dual stage actuator,” IFAC Proceedings Volumes, vol. 46, no. 5, pp. 20–27, 2013. 6th IFAC Symposium on Mechatronic Systems.
[6] X. Hu, W. Guo, T. Huang, and B. Chen, “Discrete-time lqg/ltr dual-stage controller design and im- plementation for high track density hdds,” in Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), vol. 6, pp. 4111–4115 vol.6, 1999.
[7] S.Suh,C.Chung,andS.Lee,“Designandanalysisofdual-stageservosystemforhightrackdensity hdds,” Microsystem Technologies, vol. 8, pp. 161–168, 2002.
[8] S. J. Schroeck, W. C. Messner, and R. J. McNab, “On compensator design for linear time-invariant dual-input single-output systems,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 1, pp. 50– 57, 2001.
[9] H. R. Rapley and W. C. Messner, “Designing controllers for two stage disk drive actuator systems using the pq method and the sbode plot,” IEEE Transactions on Magnetics, vol. 37, no. 2, pp. 944– 948, 2001.
[10] A. Al Mamun, I. Mareels, T. Lee, and A. Tay, “Dual stage actuator control in hard disk drive - a review,” in IECON’03. 29th Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. No.03CH37468), vol. 3, pp. 2132–2137 Vol.3, 2003.
[11] G. Guo, D. Wu, and T. Chong, “Modified dual-stage controller for dealing with secondary-stage ac- tuator saturation,” IEEE Transactions on Magnetics, vol. 39, no. 6, pp. 3587–3592, 2003.
[12] Y. Li and R. Horowitz, “Mechatronics of electrostatic microactuators for computer disk drive dual- stage servo systems,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 2, pp. 111–121, 2001.
[13] B.-j. Hou, J.-s. Gao, and Y.-f. Zhou, “The development of an ultra-precision dual-stage based on a master-slave control system,” in 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM), pp. 727–730, IEEE, 2012.
[14] C. W. Lee and S. M. Suh, “Model prediction based dual-stage actuator control in discrete-time do- main,” IEEE Transactions on Magnetics, vol. 47, no. 7, pp. 1830–1836, 2011.
[15] D. S. Naidu, Optimal Control Systems. CRC Press, 2002.
[16] J. R. Ryoo, T.-Y. Doh, and M. J. Chung, “Compensator design for a dual-stage actuator in the track- following servo system of optical disk drives,” IEEE Transactions on Consumer Electronics, vol. 51, no. 2, pp. 471–477, 2005.
[17] M. Kobayashi and R. Horowitz, “Track seek control for hard disk dual-stage servo systems,” IEEE Transactions on Magnetics, vol. 37, no. 2, pp. 949–954, 2001.
[18] M. Kobayashi, S. Nakagawa, and S. Nakamura, “A phase-stabilized servo controller for dual-stage actuators in hard disk drives,” IEEE Transactions on Magnetics, vol. 39, no. 2, pp. 844–850, 2003.
[19] X. Huang, R. Nagamune, and R. Horowitz, “A comparison of multirate robust track-following con- trol synthesis techniques for dual-stage and multisensing servo systems in hard disk drives,” IEEE Transactions on Magnetics, vol. 42, no. 7, pp. 1896–1904, 2006.
[20] A.T.Salton,Z.Chen,J.Zheng,andM.Fu,“Constrainedoptimalpreviewcontrolofdual-stageactu- ators,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 1179–1184, 2016.
[21] L.Wang,J.Zheng,andM.Fu,“Optimalpreviewcontrolofadual-stageactuatorsystemfortriangular reference tracking,” IEEE Transactions on Control Systems Technology, vol. 22, no. 6, pp. 2408–2416, 2014.
[22] U. Boettcher, B. Raeymaekers, R. A. de Callafon, and F. E. Talke, “Dynamic modeling and control of a piezo-electric dual-stage tape servo actuator,” IEEE Transactions on Magnetics, vol. 45, no. 7, pp. 3017–3024, 2009.
[23] D. Hernandez, S.-S. Park, R. Horowitz, and A. K. Packard, “Dual-stage track-following servo de- sign for hard disk drives,” in American Control Conference, 1999. Proceedings of the 1999, vol. 6, pp. 4116–4121, IEEE, 1999.
[24] J.Ding,M.Tomizuka,andH.Numasato,“Designandrobustnessanalysisofdualstageservosystem,” in Proceedings of the 2000 American Control Conference, vol. 4, pp. 2605–2609, IEEE, 2000.
[25] R. A. De Callafon, R. Nagamune, and R. Horowitz, “Robust dynamic modeling and control of dual- stage actuators,” IEEE Transactions on Magnetics, vol. 42, no. 2, pp. 247–254, 2006.
[26] R. Nagamune, X. Huang, and R. Horowitz, “Robust control synthesis techniques for multirate and multisensing track-following servo systems in hard disk drives,” Journal of dynamic systems, measurement, and control, vol. 132, no. 2, p. 021005, 2010.
[27] D. Kim, K.-T. Nam, S. H. Ji, and S. M. Lee, “Modeling of a dual actuator system and its control algorithm preventing saturation of fine actuator,” in 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 530–535, 2011.
[28] H. Li, C. Du, and Y. Wang, “Optimal reset control for a dual-stage actuator system in hdds,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 3, pp. 480–488, 2011.
[29] W. S. Nagel and K. K. Leang, “Cascading structure linear quadratic tracking control for dual-stage nanopositioning systems,” in 2020 American Control Conference (ACC), pp. 70–75, 2020.
[30] L.Y.Pao,“Multi-inputshapingdesignforvibrationreduction,”Automatica,vol.35,no.1,pp.81–89, 1999.
[31] P.I.ChangandC.-W.Wu,“Iterativereferenceinputshappingfordualstageactuators:Apreliminary study,” in 2016 International Conference on System Science and Engineering (ICSSE), pp. 1–4, 2016.
[32] R. Antonello, R. Oboe, S. Bizzotto, E. Siego, Y. Yazaki, W. Ohnishi, and H. Fujimoto, “Feasible trajectory generation for a dual stage positioning system using a simplified model predictive control approach,” in 2015 IEEE International Conference on Mechatronics (ICM), pp. 608–613, 2015.
[33] J.Zheng,“Modelpredictivecontrolofadual-stageactuatorsystemforfastsetpointtracking,”in2013 8th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1604–1609, IEEE, 2013.
[34] M. Vidyasagar, Control System Synthesis: A Factorization Approach. MIT Press„ September 1988.
[35] J. M. MacIejowski, Multivariable Feedback Design. Addison-Wesley, November 1989.

QR CODE