簡易檢索 / 詳目顯示

研究生: MIKHA ZEFANYA SILITONGAMIKHA ZEFANYA SILITONGA
MIKHA ZEFANYA SILITONGA
論文名稱: 開發雙金屬鎳基合金作為濺射陰極電極用於高效電化學水分解
Developing Bimetallic Nickel-Based Alloy as the Cathode Electrodes Made by Sputtering Technique for High-Efficient Electrochemical Water Splitting
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 柯文政
Wen-Cheng Ke
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 92
中文關鍵詞: 磁控濺射雙金屬鈷鎳合金雙層膜電觸媒析氫反應堆疊電池
外文關鍵詞: magnetron sputtering, bimetallic, cobalt-nickel alloy, bilayer film, electrocatalyst, hydrogen evolution reaction, stack-cell
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

能源是世界範圍內的一個重大問題。 許多國家和科學家建議從不可再生能源轉向可再生能源。 氫氣是替代化石燃料的替代燃料。 全球約 96% 的氫氣生產基於不可再生和不可持續的技術,例如蒸汽甲烷重整、煤氣化和石油氧化,這些技術產生 CO2 產物並依賴化石燃料。 由於原料(水)豐富,水電解技術可以克服這些缺點,並且可以產生綠色氫氣。 由於鉑(Pt)和二氧化銥(IrO2)或二氧化釕(RuO2)分別作為氫和氧析出反應的基準,催化劑成本高,電解僅貢獻了全球氫氣生產的約4%。 這就是我們使用電解技術通過開發具有綠色合成、可擴展方法和良好操作耐久性的高性能地球豐富催化劑來產生氫氣的原因。
在這項工作中,我們通過濺射技術報告了一種新型鎳基雙金屬合金和雙層電催化劑。 通過 X 射線衍射 (XRD)、場發射掃描電子顯微鏡 (FE-SEM)、高解析度透射電子顯微鏡 (HR-TEM)、X 射線光電子能譜 (XPS) 和電化學分析對其結構進行了表徵,包括 過電位、動力學反應、電荷轉移電阻、表面活性面積和耐久性。 本論文共分為五個部分,包括用於制氫的雙金屬CoNix合金、用於制氫的雙層Ni/CoNi4、用於析氧的NiFe-LDH、用於全電池水電解的Ni/CoNi4||NiFe-180和Ni/CoNi4|。 |用於鹼性交換膜 (AEM) 水電解的 NiFe-180,如下所述:
I:採用射頻磁控濺射技術成功濺射出摩爾比 x = 1、2、4 和 8 的雙金屬 CoNix 合金催化劑。 通過在鹼性介質中的電化學分析測量催化活性。 作為最佳摩爾比,CoNi4 合金具有 53 和 175 mV 的低過電位,分別達到 10 和 100 mA/cm2,Tafel 斜率為 68.08 mV/dec。 CoNi4 合金具有最低的電荷轉移電阻 1.14 Ω 和最大的電化學活性表面積 485 cm2。 CoNi4合金的耐久性是在10和50 mA/cm2的恒定電流密度下連續運行20小時來檢驗的。
II:採用兩步濺射技術製備了一種具有顆粒結構的新型雙層Ni/CoNi-4薄膜電極,以提高鹼性溶液中高電流密度下的導電性和耐久性。 電化學分析表明,與單層相比,雙層 Ni/CoNi4 薄膜電極技術具有大大提高的催化活性。 實現 100、250、500 和 1000 mA/cm2 的電流密度分別只需要 108、182、260 和 343 mV 的過電勢。 雙層 Ni/CoNi-4 薄膜電極具有 37.3 mV/dec 的更快動力學反應和 1.27 Ω 的更低電子轉移電阻。 在塗覆 CoNi4 層後,Ni 層的活性表面積顯著增加。 雙層 Ni/CoNi-4 薄膜電極的優異耐久性在計時電位法中以 250、500 和 1000 mA/cm2 的連續恒定電流密度顯示 100 小時。 這種顯著的催化活性可歸因於鎳膜的協同作用,可提高導電性並降低膜應力。 這表明 Ni 層在提高 CoNi4 薄膜的催化活性方面起著至關重要的作用。
III:由於其高析氧反應性能,選擇NiFe-LDH作為陽極。 最佳沉積時間為 180 秒的電沉積 NiFe-LDH 顯示出 245、277 和 323 mV 的低過電勢,可實現 100、250 和 500 mA/cm2 的電流密度。 另一個電化學參數顯示NiFe-180具有最快的動力學反應、最低的電子轉移電阻和最高的活性表面積。
IV:我們將雙層 Ni/CoNi¬4 薄膜電極與 NiFe-180 分別作為陰極和陽極耦合,用於全電池水電解。 使用 Ni/CoNi4||NiFe-180 的水電解槽僅需要低至 1.61、1.71 和 1.83 V 的電池電壓即可分別在 100、250 和 500 mA/cm2 的電流密度下驅動水電解。 這些電勢明顯低於 40% Pt/C||RuO2 的 HER 和 OER 催化劑的基準。 計時電位測試表明Ni/CoNi4||NiFe-180的耐久性遠優於Pt/C||RuO2。
V:我們的催化劑在工業應用中的適用性是通過組裝一個放大 16 倍的 Ni/CoNi4||NiFe-180 的堆疊電池電解槽來評估的。 我們的 Ni/CoNi4||NiFe-180 電池需要潛力


Energy is a major issue worldwide. Many countries and scientists propose switching from nonrenewable to renewable energy sources. Hydrogen is an alternative fuel to replace fossil fuels. About 96% of global hydrogen production is based on unrenewable and unsustainable techniques, such as steam methane reforming, coal gasification, and oil oxidation, which have CO2 products and dependence on fossil fuels. Those disadvantages could be overcome with the water electrolysis technique due to the abundant feedstock (water) and could generate green hydrogen. The electrolysis only contributes about 4 % of global hydrogen production due to the high cost of the catalysts, such as platinum (Pt) and iridium dioxide (IrO2) or ruthenium dioxide (RuO2) as the benchmark of hydrogen and oxygen evolution reaction, respectively. This is the reason why we used the electrolysis technique to generate hydrogen by developing a high-performance earth-abundant catalyst with a green synthesis, scalable method, and good operational durability.
In this work, we report a novel Ni-based bimetal alloy and bilayer electrocatalyst by a sputtering technique. Their structures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), high-resolution transmission electron microscope (HR-TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical analysis including the overpotential, kinetic reactions, charge transfer resistance, surface active area, and durability. There are five parts in this thesis including bimetallic CoNix alloy for hydrogen generation, bilayer Ni/CoNi4 for hydrogen generation, NiFe-LDH for oxygen evolution, Ni/CoNi4||NiFe-180 for full-cell water electrolysis, and Ni/CoNi4||NiFe-180 for alkaline exchange membrane (AEM) water electrolysis with stack-cell method, as discussed below:
I: Bimetallic CoNix alloy catalysts, with molar ratios x = 1, 2, 4, and 8, were successfully sputtered by the radio frequency magnetron sputtering technique. The catalytic activity was measured by the electrochemical analysis in an alkaline medium. As the most optimum molar ratio, CoNi4 alloy possessed low overpotentials of 53 and 175 mV to achieve 10 and 100 mA/cm2, respectively, with the Tafel slope value of 68.08 mV/dec. CoNi4 alloy had the lowest charge transfer resistance of 1.14 Ω and the largest electrochemical active surface area of 485 cm2. The durability of CoNi4 alloy was examined under the continuous operation of constant current densities of 10 and 50 mA/cm2 for 20 hours.
II: A novel bilayer Ni/CoNi¬4 film electrode with a granular structure was fabricated by a two-step sputtering technique to enhance electrical conductivity and durability at the high current density in alkaline solutions. The electrochemical analysis revealed that the bilayer Ni/CoNi4 film electrode technique had much improved catalytic activity as compared to the single layer. Achieving current densities of 100, 250, 500, and 1000 mA/cm2 only required overpotentials of 108, 182, 260, and 343 mV, respectively. Bilayer Ni/CoNi¬4 film electrode had a faster kinetic reaction of 37.3 mV/ dec and lower electron transfer resistance of 1.27 Ω. The active surface area of the Ni layer was significantly increased following coating with the CoNi4 layer. The superior durability of the bilayer Ni/CoNi¬4 film electrode was displayed in chronopotentiometry with continuous constant current densities of 250, 500, and 1000 mA/cm2 for 100 hours. This significant catalytic activity can be attributable to the synergistic action of Ni film, which could boost conductivity and reduce film stress. This demonstrates that the Ni layer serves a vital role in increasing the catalytic activity of CoNi4 films.
III: The NiFe-LDH was selected as the anode due to its high oxygen evolution reaction performance. The as-electrodeposited NiFe-LDH with the most optimum deposition time of 180 seconds builds exhibited low overpotentials of 245, 277, and 323 mV to achieve current densities of 100, 250, and 500 mA/cm2. The other electrochemical parameter displayed that NiFe-180 had the fastest kinetic reactions, the lowest electron transfer resistance, and the highest active surface area.
IV: We coupled the bilayer Ni/CoNi¬4 film electrode with that NiFe-180 as cathode and anode, respectively, for full-cell water electrolysis. The water electrolyzers using Ni/CoNi4||NiFe-180 only require cell voltages as low as 1.61, 1.71, and 1.83 V to drive water electrolysis at current densities of 100, 250, and 500 mA/cm2, respectively. These potentials are significantly lower than of that the benchmark of HER and OER catalysts of 40% Pt/C||RuO2. The chronopotentiometry test revealed that the durability of Ni/CoNi4||NiFe-180 is much better than that of Pt/C||RuO2.
V: The applicability of our catalysts for industrial application was evaluated by assembling a stacked cell electrolyzer with sixteen times scaled-up Ni/CoNi4||NiFe-180. Our Ni/CoNi4||NiFe-180 cells need potentials of 1.62 and 1.75 V to reach 100 and 250 mA/cm2, respectively, in 1.0 M KOH. The stability test at 250 mA/cm2 for 25 hours showed a slight decline. Furthermore, the next 25 hours of the stability test in 6.9 M KOH require cell potentials of 1.57 and 1.71 V to achieve 100 and 250 mA/cm2, respectively. The chronopotentiometry shows a slight degradation due to powerful gas bombardment at a high current of 4500 mA. Our electrolyzer cell can produce 1820 and 890 mL/h of hydrogen and oxygen gasses, respectively, with the calculated stack cell efficiency of 70.9%.
Keywords: magnetron sputtering, bimetallic, cobalt-nickel alloy, bilayer film, electrocatalyst, hydrogen evolution reaction, stack-cell.

Acknowledgments I ABSTRACT II Table of Contents V List of Figures VIII List of Tables XII Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Purposes 2 Chapter 2 Basic Theory and Literature Review 4 2.1 The Basic Theory of Electrocatalytic Water Splitting 4 2.1.1 Oxygen Evolution Reaction (OER) Mechanism 4 2.1.2 Hydrogen Evolution Reaction (HER) Mechanism 5 2.2 Basic Theory of Electrochemical Characterizations of Catalyst 6 2.2.1 Gibbs Free Energy and Overpotential 6 2.2.2 Tafel Slope and Exchange Current Density 7 2.2.3 Charge-Transfer Resistance (Rct) 9 2.2.4 Cyclic Voltammetry 9 2.2.5 Electrochemical Active Surface Area (ECSA) 10 2.2.6 Faradaic Efficiency 10 2.2.7 Stability 11 2.3 Fabrication of Catalyst 11 2.3.1 Magnetron Sputtering 12 2.3.2 Electrodeposition 14 2.4 Ni-based electrocatalyst 15 2.5 Co-based electrocatalyst 18 2.6 Bimetallic metal transition alloy electrocatalyst 20 2.6.1 Nickel-Copper Alloy Electrocatalyst 21 2.6.2 Nickel-Molybdenum Alloy based for electrocatalyst 22 2.7 Bilayer electrocatalyst 28 2.7.1 Bilayer Pd-Pt nanocages with sub-nanometer 28 2.7.2 Bilayer Ni3N/Ni Electrocatalyst 29 2.8 NiFe-based electrocatalyst for Oxygen Evolution Reaction (OER) 33 2.8.1 Layered-Double Hydroxide (LDH) 33 Chapter 3 Materials and Research Methodology 36 3.1 Materials 36 3.1.1 Chemicals 36 3.1.2 Instruments 36 3.2 Catalyst Preparation 37 3.2.1 Ball miller machine 37 3.2.2 Vacuum hot press machine 37 3.2.3 Substrate Preparation 37 3.2.4 Radio Frequency (RF) Magnetron Sputtering 38 3.2.5 Electrodeposition NiFe-LDH 40 3.2.6 Preparation of Pt/C and RuO2 40 3.3 Characterizations of Catalysts 41 3.3.1 X-ray diffractometry (XRD) Analysis 41 3.3.2 Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive Spectroscopy (EDS) Analyses 42 3.3.3 High-resolution transmission electron microscopy (HR-TEM) Analysis 44 3.3.4 X-ray photoelectron spectroscopy (XPS) Analysis 44 3.3.5 Electrochemical Analysis 45 Chapter 4 Results and Discussion 47 4.1 Single-layer Bimetallic CoNix Thin Films by Changing Ni Molar Ratios for HER 47 4.1.1 XRD analysis for CoNix with different Ni molar ratios 47 4.1.2 Scanning Electron Microscopy (SEM) Analysis 49 4.1.3 Transmission Electron Microscopy (TEM) Analysis 51 4.1.4 XPS Analysis 52 4.1.5 Electrochemical Analysis for CoNix with Different Ni Molar Ratios 53 4.1.6 Post-Characterization 57 4.1.7 Hydrogen Evolution Reaction Mechanism 58 4.2 Bilayer Ni/CoNi4 Film Electrode for HER 60 4.2.1 XRD Analysis for Bilayer Ni/CoNi4 60 4.2.2 Scanning Electron Microscopy (SEM) Analysis for Bilayer Ni/CoNi4 62 4.2.3 Transmission Electron Microscopy (TEM) Analysis for Bilayer Ni/CoNi4 63 4.2.4 XPS Analysis for Bilayer Ni/CoNi4 64 4.2.5 Electrochemical Analysis for Bilayer Ni/CoNi4 66 4.2.6 HER Mechanism for Bilayer Ni/CoNi4 71 4.3 NiFe-LDH films for OER 74 4.3.1 Microstructure Analysis 75 4.3.2 XPS Analysis 76 4.3.3 Electrochemical Analysis 76 4.4 Full-Cell Water Electrolysis 78 4.4.1 Electrochemical Analysis 78 4.5 Alkaline Exchange Membrane (AEM) Water Electrolysis with Stack-cell Method 79 4.5.1 Electrochemical Analysis 79 Chapter 5 Conclusions 83 References 85

1. Luo, M., et al., An electrodeposited MoS2-MoO3−x/Ni3S2 heterostructure electrocatalyst for efficient alkaline hydrogen evolution. Chemical Engineering Journal, 2022. 428: p. 131055.
2. Yang, W., et al., Defect engineering of cobalt microspheres by S doping and electrochemical oxidation as efficient bifunctional and durable electrocatalysts for water splitting at high current densities. Journal of Power Sources, 2019. 436: p. 226887.
3. Dai, W., et al., A novel Ni-S-Mn electrode with hierarchical morphology fabricated by gradient electrodeposition for hydrogen evolution reaction. Applied Surface Science, 2020. 514: p. 145944.
4. Zhang, B., et al., Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting. Applied Catalysis B: Environmental, 2021. 298: p. 120494.
5. Zhang, D., et al., Earth-Abundant Amorphous Electrocatalysts for Electrochemical Hydrogen Production: A Review. Advanced Energy and Sustainability Research, 2021. 2(3): p. 2000071.
6. Wang, J., et al., Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: A review. Journal of Alloys and Compounds, 2020. 819: p. 153346.
7. Roger, I., M. Shipman, and M.D. Symes. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. 2017.
8. Yan, Y., et al., A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016. 4(45): p. 17587-17603.
9. Zheng, X., et al., Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting. Nanoscale, 2019. 11(12): p. 5646-5654.
10. Vij, V., et al., Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis, 2017. 7(10): p. 7196-7225.
11. Li, Y., et al., A Minireview on Nickel-Based Heterogeneous Electrocatalysts for Water Splitting. ChemCatChem, 2019. 11(24): p. 5913-5928.
12. Anantharaj, S. and S. Noda, Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: A review. International Journal of Hydrogen Energy, 2020. 45(32): p. 15763-15784.
13. Ganci, F., et al., Nanostructured Ni–Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer. International Journal of Hydrogen Energy, 2021. 46(16): p. 10082-10092.
14. Liu, S., et al., Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 2022. 46(29): p. 13818-13837.
15. Zhang, Q., et al., Superaerophobic Ultrathin Ni–Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction. Small, 2017. 13(41): p. 1701648.
16. Luo, Y., et al., Transition of interface oxide layer from porous Mg(OH)2 to dense MgO induced by polyaniline and corrosion resistance of Mg alloy therefrom. Applied Surface Science, 2015. 328: p. 247-254.
17. Li, R., et al., Enhanced electron transport through a nanoforest-like structure of CoNi nanoalloy@nitrogen-doped carbon nanotubes for highly efficient catalysis of overall water splitting. Applied Surface Science, 2020. 517: p. 145841.
18. Zhang, C., et al., Self-Limiting Growth of Single-Layer N-Doped Graphene Encapsulating Nickel Nanoparticles for Efficient Hydrogen Production. ACS Applied Materials & Interfaces, 2021. 13(3): p. 4294-4304.
19. Ji, D., et al., Atomically Transition Metals on Self-Supported Porous Carbon Flake Arrays as Binder-Free Air Cathode for Wearable Zinc−Air Batteries. Advanced Materials, 2019. 31(16): p. 1808267.
20. Nwabara, U.O., et al., Binder-Focused Approaches to Improve the Stability of Cathodes for CO2 Electroreduction. ACS Applied Energy Materials, 2021. 4(5): p. 5175-5186.
21. McGovern, M.S., et al., Effects of Nafion as a binding agent for unsupported nanoparticle catalysts. Journal of Power Sources, 2003. 115(1): p. 35-39.
22. Zhentao Zhu, S.T., Jiawei Yuan, Xiaolong Qin, Yuxiao Deng, Renjie Qu, Geir Martin Haarberg, Effects of Various Binders on Supercapacitor Performances. International Journal of Electrochemical Science, 2016. 11: p. 8270 – 8279.
23. Ebnesajjad, S.E.C., Surface Treatment of Materials for Adhesive Bonding. 2013: William Andrew.
24. Kinloch, A.J., Mechanisms of adhesion, in Adhesion and Adhesives: Science and Technology, A.J. Kinloch, Editor. 1987, Springer Netherlands: Dordrecht. p. 56-100.
25. Koenig, S.P., et al., Ultrastrong adhesion of graphene membranes. Nature Nanotechnology, 2011. 6(9): p. 543-546.
26. Cao, Z., et al., A blister test for interfacial adhesion of large-scale transferred graphene. Carbon, 2014. 69: p. 390-400.
27. Nellist, M.R., et al., Semiconductor–Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting. Accounts of Chemical Research, 2016. 49(4): p. 733-740.
28. Andriotis, A.N., M. Menon, and G.E. Froudakis, Various bonding configurations of transition-metal atoms on carbon nanotubes: Their effect on contact resistance. Applied Physics Letters, 2000. 76(26): p. 3890-3892.
29. Zhou, Y., et al., Revealing the Contribution of Individual Factors to Hydrogen Evolution Reaction Catalytic Activity. Advanced Materials, 2018. 30(18): p. 1706076.
30. Kelly, P.J. and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
31. Zhang, D., et al., One-step preparation of optically transparent Ni-Fe oxide film electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2015. 169: p. 402-408.
32. Sutter, P., et al., Scalable Synthesis of Uniform Few-Layer Hexagonal Boron Nitride Dielectric Films. Nano Letters, 2013. 13(1): p. 276-281.
33. Hu, H., et al., Direct Growth of Vertically Orientated Nanocavity Arrays for Plasmonic Color Generation. Advanced Functional Materials, 2020. 30(32): p. 2002287.
34. Gao, B., et al., Wettability transition of Ni3B4-doped MoS2 for hydrogen evolution reaction by magnetron sputtering. Applied Surface Science, 2020. 510: p. 145368.
35. Liang, J., et al., Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 2021. 23(8): p. 2834-2867.
36. Wang, F., et al., Magnetron sputtering enabled synthesis of nanostructured materials for electrochemical energy storage. Journal of Materials Chemistry A, 2020. 8(39): p. 20260-20285.
37. Alexeeva, O.K. and V.N. Fateev, Application of the magnetron sputtering for nanostructured electrocatalysts synthesis. International Journal of Hydrogen Energy, 2016. 41(5): p. 3373-3386.
38. Busch, M., et al., Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy, 2016. 29: p. 126-135.
39. Deng, R., et al., Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting: From catalytic mechanism and synthesis method to optimization design. Nano Materials Science, 2022.
40. Mahmood, N., et al., Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Advanced Science, 2018. 5(2): p. 1700464.
41. Zheng, Y., et al., The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. Angewandte Chemie International Edition, 2018. 57(26): p. 7568-7579.
42. Zheng, Y., et al., Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed Engl, 2015. 54(1): p. 52-65.
43. Zou, X. and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015. 44(15): p. 5148-5180.
44. Wang, J., et al., Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Adv Mater, 2017. 29(14).
45. Shi, Y. and B. Zhang, Correction: Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016. 45(6): p. 1781-1781.
46. Heinze, J., Allen J. Bard and Larry F. Faulkner: Electrochemical Methods – Fundamentals and Applications. Wiley, New York 1980, 718 + XVIII S., Preis: £ 14.70. Berichte der Bunsengesellschaft für physikalische Chemie, 1981. 85(11): p. 1085-1086.
47. Nørskov, J.K., et al., Trends in the Exchange Current for Hydrogen Evolution. Journal of The Electrochemical Society, 2005. 152(3): p. J23.
48. Bockris, J.O.M. and E.C. Potter, The Mechanism of the Cathodic Hydrogen Evolution Reaction. Journal of The Electrochemical Society, 1952. 99(4): p. 169.
49. Fletcher, S., Tafel slopes from first principles. Journal of Solid State Electrochemistry, 2009. 13(4): p. 537-549.
50. Conway, B.E. and B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta, 2002. 47(22): p. 3571-3594.
51. Shi, Y. and B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016. 45(6): p. 1529-1541.
52. Kim, J., et al., Effect of IGZO thin films fabricated by Pulsed-DC and RF sputtering on TFT characteristics. Materials Science in Semiconductor Processing, 2020. 120: p. 105264.
53. Kim, J., et al., Potential-current co-adjusted pulse electrodeposition for highly (110)-oriented Bi2Te3-xSex films. Journal of Alloys and Compounds, 2019. 787: p. 767-771.
54. Gong, M., et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014. 5(1): p. 4695.
55. Fang, Y., et al., Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. Science China Chemistry, 2020. 63(11): p. 1563-1569.
56. Hu, H., et al., Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. Journal of the American Chemical Society, 2015. 137(16): p. 5590-5595.
57. Wang, X., et al., Porous Cobalt–Nickel Hydroxide Nanosheets with Active Cobalt Ions for Overall Water Splitting. Small, 2019. 15(8): p. 1804832.
58. Sliozberg, K., et al., CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction. Zeitschrift für Physikalische Chemie, 2020. 234(5): p. 995-1019.
59. Liardet, L. and X. Hu, Amorphous Cobalt Vanadium Oxide as a Highly Active Electrocatalyst for Oxygen Evolution. ACS Catalysis, 2018. 8(1): p. 644-650.
60. Tan, J.-B., et al., Highly efficient oxygen evolution electrocatalysts prepared by using reduction-engraved ferrites on graphene oxide. Inorganic Chemistry Frontiers, 2018. 5(2): p. 310-318.
61. Chen, S., et al., Three-Dimensional N-Doped Graphene Hydrogel/NiCo Double Hydroxide Electrocatalysts for Highly Efficient Oxygen Evolution. Angewandte Chemie International Edition, 2013. 52(51): p. 13567-13570.
62. Song, F., K. Schenk, and X. Hu, A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energy & Environmental Science, 2016. 9(2): p. 473-477.
63. Li, H., et al., Colloidal Cobalt Phosphide Nanocrystals as Trifunctional Electrocatalysts for Overall Water Splitting Powered by a Zinc–Air Battery. Advanced Materials, 2018. 30(9): p. 1705796.
64. Tian, J., et al., Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. Journal of the American Chemical Society, 2014. 136(21): p. 7587-7590.
65. Peng, S., et al., Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angewandte Chemie International Edition, 2014. 53(46): p. 12594-12599.
66. Ma, X., et al., Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale, 2018. 10(10): p. 4816-4824.
67. Chen, P., et al., Phase-Transformation Engineering in Cobalt Diselenide Realizing Enhanced Catalytic Activity for Hydrogen Evolution in an Alkaline Medium. Advanced Materials, 2016. 28(34): p. 7527-7532.
68. Kwak, I.H., et al., CoSe2 and NiSe2 Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2016. 8(8): p. 5327-5334.
69. Xing, Z., et al., Interconnected Co-Entrapped, N-Doped Carbon Nanotube Film as Active Hydrogen Evolution Cathode over the Whole pH Range. ChemSusChem, 2015. 8(11): p. 1850-1855.
70. Zhang, Y., et al., Evaluating the Stability of Co2P Electrocatalysts in the Hydrogen Evolution Reaction for Both Acidic and Alkaline Electrolytes. ACS Energy Letters, 2018. 3(6): p. 1360-1365.
71. Sheng, M., et al., Co-W/CeO2 composite coatings for highly active electrocatalysis of hydrogen evolution reaction. Journal of Alloys and Compounds, 2018. 743: p. 682-690.
72. Cardoso, D.S.P., et al., Enhancement of hydrogen evolution in alkaline water electrolysis by using nickel-rare earth alloys. International Journal of Hydrogen Energy, 2015. 40(12): p. 4295-4302.
73. Shen, Y., et al., Nickel–Copper Alloy Encapsulated in Graphitic Carbon Shells as Electrocatalysts for Hydrogen Evolution Reaction. Advanced Energy Materials, 2018. 8(2): p. 1701759.
74. Zhang, J., et al., Electrodeposition of magnetic, superhydrophobic, non-stick, two-phase Cu–Ni foam films and their enhanced performance for hydrogen evolution reaction in alkaline water media. Nanoscale, 2014. 6(21): p. 12490-12499.
75. Gao, W., et al., Amine-Modulated/Engineered Interfaces of NiMo Electrocatalysts for Improved Hydrogen Evolution Reaction in Alkaline Solutions. ACS Applied Materials & Interfaces, 2018. 10(2): p. 1728-1733.
76. Cao, J., et al., Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019. 44(45): p. 24712-24718.
77. Wang, Y., et al., A 3D Nanoporous Ni–Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution. ChemElectroChem, 2014. 1(7): p. 1138-1144.
78. Wang, Y., et al., Fabrication of bilayer Pd-Pt nanocages with sub-nanometer thin shells for enhanced hydrogen evolution reaction. Nano Research, 2019. 12(9): p. 2268-2274.
79. Zhang, D., et al., Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy & Environmental Science, 2022. 15(1): p. 185-195.
80. Lu, Z., et al., Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical Communications, 2014. 50(49): p. 6479-6482.
81. Baskaran, S., Structure and regulation of yeast glycogen synthase, in Department of Biochemistry & Molecular Biology. 2010, Indiana University: IUPUI Scholar Works.
82. Jiang, X., T. Higuchi, and H. Jinnai, Scanning Electron Microscopy, in Molecular Soft-Interface Science: Principles, Molecular Design, Characterization and Application, M. Maeda, et al., Editors. 2019, Springer Japan: Tokyo. p. 141-146.
83. Chen, Y.-Y., et al., Pomegranate-like N,P-Doped Mo2C@C Nanospheres as Highly Active Electrocatalysts for Alkaline Hydrogen Evolution. ACS Nano, 2016. 10(9): p. 8851-8860.
84. Wang, M., et al., Theoretical Expectation and Experimental Implementation of In Situ Al-Doped CoS2 Nanowires on Dealloying-Derived Nanoporous Intermetallic Substrate as an Efficient Electrocatalyst for Boosting Hydrogen Production. ACS Catalysis, 2019. 9(2): p. 1489-1502.
85. Zhou, L., et al., Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Materials Horizons, 2017. 4(2): p. 268-273.
86. Edla, R., et al., Study of Gaseous Interactions on Co3O4 Thin Film Coatings by Ambient Pressure Soft X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C, 2019. 123(40): p. 24511-24519.
87. Yang, S., et al., A metal–organic framework/polymer derived catalyst containing single-atom nickel species for electrocatalysis. Chemical Science, 2020. 11(40): p. 10991-10997.
88. Weidler, N., et al., X-ray Photoelectron Spectroscopic Investigation of Plasma-Enhanced Chemical Vapor Deposited NiOx, NiOx(OH)y, and CoNiOx(OH)y: Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction. The Journal of Physical Chemistry C, 2017. 121(12): p. 6455-6463.
89. Gultom, N.S., et al., Fabrication of an Ag2S-MoSx/MoNiAg film electrode for efficient electrocatalytic hydrogen evolution in alkaline solution. Materials Today Energy, 2021. 21: p. 100768.
90. Anantharaj, S., et al., Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science, 2018. 11(4): p. 744-771.
91. Shinagawa, T., A.T. Garcia-Esparza, and K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific Reports, 2015. 5(1): p. 13801.
92. Chen, Z., et al., Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. Journal of Materials Chemistry A, 2019. 7(25): p. 14971-15005.
93. McCrory, C.C.L., et al., Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2013. 135(45): p. 16977-16987.
94. Zhang, J., et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017. 8(1): p. 15437.
95. Jin, H., et al., In situ Cobalt–Cobalt Oxide/N-Doped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution. Journal of the American Chemical Society, 2015. 137(7): p. 2688-2694.
96. Chrzanowski, W. and F. Dehghani, 9 - Standardised chemical analysis and testing of biomaterials, in Standardisation in Cell and Tissue Engineering, V. Salih, Editor. 2013, Woodhead Publishing. p. 166-197a.
97. Ali, H., et al., Impact of oxygen vacancies in Ni supported mixed oxide catalysts on anisole hydrodeoxygenation. Catalysis Communications, 2022. 164: p. 106436.
98. Li, Q., et al., Self-Organized Growth of Two-Dimensional GaTe Nanosheet on ZnO Nanowires for Heterojunctional Water Splitting Applications. ACS Applied Materials & Interfaces, 2017. 9(22): p. 18836-18844.
99. Linder, C., et al., Cobalt thin films as water-recombination electrocatalysts. Surface and Coatings Technology, 2020. 404: p. 126643.
100. Cheng, P.-Y., et al., Surface Modification of FeCoNiCr Medium-Entropy Alloy (MEA) Using Octadecyltrichlorosilane and Atmospheric-Pressure Plasma Jet. Polymers, 2020. 12(4): p. 788.
101. Wang, C., et al., Atomic Cobalt Covalently Engineered Interlayers for Superior Lithium-Ion Storage. Advanced Materials, 2018. 30(32): p. 1802525.
102. Ahmed, M.S., B. Choi, and Y.-B. Kim, Development of Highly Active Bifunctional Electrocatalyst Using Co3O4 on Carbon Nanotubes for Oxygen Reduction and Oxygen Evolution. Scientific Reports, 2018. 8(1): p. 2543.
103. Marchetti, L., et al., XPS study of Ni-base alloys oxide films formed in primary conditions of pressurized water reactor. Surface and Interface Analysis, 2015. 47(5): p. 632-642.
104. Islam, M.B., et al., NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega, 2017. 2(5): p. 2291-2299.
105. Grosvenor, A.P., et al., New interpretations of XPS spectra of nickel metal and oxides. Surface Science, 2006. 600(9): p. 1771-1779.
106. Larsson, A., et al., Thickness and composition of native oxides and near-surface regions of Ni superalloys. Journal of Alloys and Compounds, 2022. 895: p. 162657.
107. Wang, Y., et al., Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting. Advanced Science, 2018. 5(8): p. 1800064.
108. Abadias, G., et al., Review Article: Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science & Technology A, 2018. 36(2): p. 020801.
109. Voiry, D., et al., Best Practices for Reporting Electrocatalytic Performance of Nanomaterials. ACS Nano, 2018. 12(10): p. 9635-9638.
110. Anantharaj, S., et al., Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis, 2016. 6(12): p. 8069-8097.
111. Krstajić, N., et al., On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism. Journal of Electroanalytical Chemistry, 2001. 512(1): p. 16-26.
112. Zheng, Y., et al., Hydrogen evolution by a metal-free electrocatalyst. Nature Communications, 2014. 5(1): p. 3783.
113. Yu, P., et al., Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019. 58: p. 244-276.
114. Gultom, N.S., et al., Overall water splitting realized by overall sputtering thin-film technology for a bifunctional MoNiFe electrode: A green technology for green hydrogen. Applied Catalysis B: Environmental, 2023. 322: p. 122103.
115. Sam, D.K., et al., CO2 assisted synthesis of silk fibroin driven robust N-doped carbon aerogels coupled with nickel–cobalt particles as highly active electrocatalysts for HER. International Journal of Hydrogen Energy, 2021. 46(41): p. 21525-21533.
116. Liu, Y., et al., Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes. ACS Nano, 2016. 10(6): p. 5980-5990.
117. Li, G., et al., All The Catalytic Active Sites of MoS2 for Hydrogen Evolution. Journal of the American Chemical Society, 2016. 138(51): p. 16632-16638.
118. Huang, Y., et al. Atomically engineering activation sites onto metallic 1T-MoS<sub>2</sub& gt; catalysts for enhanced electrochemical hydrogen evolution. Nature communications, 2019. 10, 982 DOI: 10.1038/s41467-019-08877-9.
119. Lide, D.R., CRC handbook of chemistry and physics. 2004: CRC Press.
120. Gultom, N.S., et al., Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide. Chemical Engineering Journal, 2021. 419: p. 129608.
121. Zhang, K., et al., A potential pyrrhotite (Fe7S8) anode material for lithium storage. RSC Advances, 2015. 5(19): p. 14828-14831.
122. Crane, R.A. and T.B. Scott, The Effect of Vacuum Annealing of Magnetite and Zero-Valent Iron Nanoparticles on the Removal of Aqueous Uranium. Journal of Nanotechnology, 2013. 2013: p. 173625.
123. Liaqat, R., et al., Fabrication of Metal (Cu and Cr) Incorporated Nickel Oxide Films for Electrochemical Oxidation of Methanol. Crystals, 2021. 11(11): p. 1398.
124. Chen, B., et al., Binder-Free Nickel Oxide Lamellar Layer Anchored CoOx Nanoparticles on Nickel Foam for Supercapacitor Electrodes. Nanomaterials, 2020. 10(2): p. 194.
125. Xiong, B., L. Chen, and J. Shi, Anion-Containing Noble-Metal-Free Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2018. 8(4): p. 3688-3707.

無法下載圖示 全文公開日期 2025/01/16 (校內網路)
全文公開日期 2025/01/16 (校外網路)
全文公開日期 2025/01/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE