簡易檢索 / 詳目顯示

研究生: 陳敏仁
min-jen Chen
論文名稱: 固態氧化物燃料電池Ni,CeO2含浸YSZ纖維陽極之製備與陽極反應研究
Development of YSZ fiber anode with impregnated catalytic ceria and Ni nano particles for SOFC
指導教授: 周振嘉
chen-chia Chou
口試委員: 王朝正
chaur-jeng Wang
周賢凱
ShyanKay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 101
中文關鍵詞: 固態氧化物燃料電池鎳基陽極氧化鎳氧化鈰
外文關鍵詞: Ni-YSZ
相關次數: 點閱:306下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要

Ni-YSZ 陶金陽極微觀結構是影響固態氧化物燃料電池發
電效率的關鍵因素。本實驗在探討由化合物硝酸鎳、硝酸鈰以二甲基亞碸為溶劑,以適當的燒結溫度與持溫時間,亦可以製備奈米氧化鎳、氧化鈰。期望藉由奈米顆粒來促進Ni-YSZ 陶金陽極孔隙率與三相點。我們以YSZ纖維製備陽極,由樹枝狀YSZ 纖維搭配樹葉狀奈米鎳顆粒,先研究固態氧化物燃料電池Ni 含浸YSZ奈米纖維 陽極之製備與特性量測,並探討不同硝酸鎳溶液濃度3M、5M、7M、9M對於奈米鎳YSZ纖維陽極微觀結構與電池效率的影響。實驗研究結果顯示,隨著硝酸鎳濃度的增加,鎳顆粒披覆於YSZ纖維的厚度增加,卻未能促進三相點的增加,反被還原後散落的鎳顆粒減少陽極的孔隙,造成極化電阻的增加,電化學反應下降。由於其在700oK-1000oK易還原成Ce2O3在結晶相中仍維持立方C相,且同時產生為數眾多的氧空缺,使CeO2 在氧化還原反應中對氧離子發揮儲存與釋放的功能。在固態氧化物燃料電池陶金陽極中加入氧化鈰可以分散鎳的聚集降低極化電阻增進電池效率。本實驗探討奈米CeO2顆粒對於Ni-8YSZ纖維陽極催化能力的影響。實驗結果顯示,隨著氧化鈰含量的增加,8YSZ 纖維與鎳、氧化鈰顆粒更緊密的接合,因此產生更多的三相點,增進電化學反應區,電極極化電阻逐漸減少,增加交換電流密度,半電池效率增加。於800oC時,測得的功率密度是測得的功率密度在未添加奈米CeO2 之奈米Ni-YSZ纖維陽極是12.3mW/cm2。添加5wt%奈米CeO2 之奈米Ni-YSZ纖維陽極是28.8mW/cm2。添加10wt%奈米CeO2 之奈米Ni-YSZ纖維陽極是32.3mW/cm2。


Abstract

The micro structure of Ni-YSZ anode cermet is the most important feature which affect the SOFC property. We fabricate anode cermet by the continuous 8YSZ fiber and nano nickel particles to improve the porosity and triple phase boundary of anode. Combined 8YSZ fiber which was developed by older schoolmate and nano particles that identified by me. “ Fabrication and characterization of SOFC anode with Ni-YSZ fiber by impregnation method.”was published by older schoolmate on July 2007. Firstly, We fabricate the nano nickel particles and nano Ceria particles by Dimethyl sulfoxide solution which mixed with Nickel nitrate and Cerium nitrate and sintered on suitable temperature 1000oC and holding time 60mins. Due to the weight ratio percentage of Ni-YSZ was taken the wrong way to examine. Therefore I proposed the stoi-chemistry to calculate the weight ratio percentage of Ni-YSZ. In addition, We analyze the affection of micro structure and performance of SOFC by the concentration of nickel nitrate.

We learned by experiment with concentration of 3M、5M、7M、9M nickel nitrate (expressed by N3M、N5M、N7M、N9M ). The 8YSZ fiber was covered by layers nickel particles. As the thickness was added as the concentration of nickel nitrate increased. It does not improve TPB. In contrary, the over fitted nano particles blocked the gas tunnels to increase the over potential, polarization resistances and decrease the electrochemical reactions. The 3M nickel nitrate is the best concentration at all.

Ceria is one of the mixed conductor which consist electronic conductivity and ionic conductivity. It is affected with Oxygen partial pressure and doping substrate. The conductivities of ceria consist of electronic、electro-holes and oxygen vacancy. Ceria act as n-type semi-conductor under the high temperature and low oxygen partial pressure. The electronic conductivity of ceria is proportion to the reduction of ceria. Oxygen vacancy compensate the ion vacancy which is formed by Ce3+ instead of Ce4+ co-valent vacancy. The electronic mobility rate is several order of ionic mobility. In addition, Ceria act an important role in catalyst. It is remain C-phase from CeO2 reduce to Ce2O3 during the period of 700oC-1000oC. It is created oxygen vacancy in the crystal lattice. Therefore, the reduction and re-oxidation caused by oxygen release and storage results in a formation of oxygen vacancies on the ceria surface.

Ceria can disperse the nickel particles to decrease polarization resistances to improve the performance of solid oxide fuel cells. Dipping YSZ fiber in nickel nitrate and ceria nitrate. Adding 5wt% & 10wt% ceria to 3M nickel nitrate for experiment. It increase more triple phase boundary and reduce polarization to improve electrochemical reactions 、exchange current and performance as ceria increasing as 8YSZ fiber is tighten with nickel particle and ceria particles. In addition, due to the CeO2 create the function of store and release oxygen ions improve electrochemical reaction and performance during the period of CeO2 reduce to Ce2O3.It is increasing obviously that working temperature up to 800oC. We got the performances are 12.3mW/cm2, 28.8Mw/cm2 and 32.3mW/cm2 respected to N3M, N3MC5, and N3MC10.

目錄 中文摘要……………………………………………………….…….…Ι 英文摘要 …………………………………………………………..…..Ⅲ 誌謝……………………………………………………………………..Ⅴ 目錄……………………………………………………..………...…... Ⅵ 圖索引………………………………………………………………..ⅩⅠ 表索引………………………………………………………………..ⅩⅥ 第一章 緒論…………………………………………………………...1 1-1. 前言……………………………………………………………...1 1-2. 研究目的與動機………………………………………………...2 第二章 文獻回顧…………………………………………………….. 5 2-1. 燃料電池簡介…………………………………………………. .5 2-2. 固體氧化物燃料電池的原理…………………………………. .5 2-3. 固態氧化物燃料電池陽極材料………………………………. .8 2-4. Ni-YSZ金屬陶瓷陽極………………………………..................9 2-4-1. Ni-YSZ金屬陶瓷陽極的製備…… ……………………..9 2-4-2. Ni-YSZ金屬陶瓷陽極的物理性質……………….........10 2-4-3. 金屬陶瓷陽極的……………………………………......10 2-4-4. Ni-YSZ金屬陶瓷陽極的導電性………………….…....11 2-4-5. Ni-YSZ金屬陶瓷陽極的熱膨脹…………………….. ...13 2-5. 電極的極化…………………………………………................14 2-5-1. 活化過電位………………………………………...… ..16 2-5-2. 濃度過電位…………………………………….… ....…17 2-5-3. 歐姆過電位…………………………………………… .19 2-6. 陽極的催化…………………………………………............ ...19 2-7. 氧化鎳 氧化鈰的特性與在陽極中的影響…………………..22 2-7-1. 鎳的優點與缺點…………………………………… ...22 2-7-2. 氧化鈰特性……………………………………... ……22 2-7-3. 氧化鈰的導電特性 ………………………………......23 2-8. 氧化鎳、 氧化鈰、的製作……......................................... ....24 2-9. 燃料電池的量測原理 ……………………..............................24 2-9-1. 特性參數…………………………...…………........ ....27 2-9-2 等效電路模式ECM (Equivalent Circuit Model)…...28 2-10. 二甲基亞碸 DMSO (dimethyl sulfoxide)的特性..……...… 32 第三章 實驗方法………………………………………………….... ...34 3-1. 實驗流程…………………………………………….……... ...34 3-1-1. 試片的製備……………………………………… ...…35 3-1-2. 實驗藥品規格及儀器設備……………………………36 3-2. 氧化鎳、氧化鈰的製作…………………………………..…...38 3-3. 8YSZ纖維的製作………………………………………... ......39 3-3-1. 纖維燒製成型…………………………………….…....41 3-4. 製作8YSZ fiber-Ni、 Ce厚膜陽極…………………………...41 3-4-1. 製備8YSZ纖維膠體…………………………….…….41 3-4-2. 網印8YSZ纖維膠並燒結………………………….....42 3-4-3. 浸鍍Ni+、Ce+於8YSZ纖維表面及煆燒……..….…...42 3-4-4. NiO還原為Ni………………………………………..42 3-5 分析試片之儀器………………………………………....... .....42 3-5-1. 粉末粒徑之分析…………………………………… ...42 3-5-2. SEM 表面影像分析…………………………………...43 3-5-3. EDS、BEI元素分析……………………………….…..43 3-5-4. X-ray繞射分析………………………………………....43 3-5-5. 交流阻抗(AC impedance)之分析…………………..…44 3-5-6. 鐵弗曲線(Tafel curve)之分析………………….…… ..47 第四章. 結果與討論………………………………………….............50 4-1. 氧化鎳、氧化鈰 的製程參數的設計………………........... ....51 4-1-1. 氧化鎳、氧化鈰 的實驗方法與X ray檢測.………. ..52 4-1-2. 硝酸鎳、硝酸鈰奈米金屬溶膠噴塗、燒結後之 SEM檢測分析……………………………………..……..…...59 4-2. YSZ纖維的製作與X ray 及SEM檢測分析…………… …65 4-3. YSZ纖維的燒結溫度……………….......................................65 4-4. 氧化鎳、氧化鈰、YSZ纖維的重量比例計算……………......69 4-4-1. 氧化鋯、氧化鎳、 氧化鈰在陽極的分佈………… …..75 4-4-2. 氧化鋯 (YSZ fiber ) 含浸不同濃度硝酸鎳在陽極結構 的影響………………………………………………………....79 4-5. 氧化鎳、 YSZ纖維陽極單電池交流阻抗分析………..……..81 4-6. 氧化鎳、 YSZ纖維陽極單電池鐵弗曲線量測…………… ...84 4-7. 氧化鎳、 YSZ纖維陽極單電池功率密度量測………….…...85 4-8. 氧化鎳、 YSZ纖維陽極添加氧化鈰對陽極結構的影響……. 90 4-8-1. 氧化鎳、 YSZ纖維陽極添加氧化鈰的陽極單電池交流阻抗分析…………………………………………….....91 4-8-2. 氧化鎳、 YSZ纖維陽極添加氧化鈰的陽極單電池鐵弗曲線量測…………………………………………. …..95 4-8-3. 氧化鎳、 YSZ纖維陽極添加奈米氧化鈰的 陽極單電池單電池功率密度量測…………………………… ...98 第五章 結論………………………………………….…….………..100 第六章 參考文獻…………………………………………………....102 圖目錄 圖2-1 固體氧化物燃料電池工作原理…………………………….…..6 圖2-2 Ni-YSZ金屬陶瓷陽極的電導率隨著Ni含量變化的S形 曲線…………………………………………….……………...12 圖2-3 Ni-YSZ金屬陶瓷陽極的平均熱膨脹係數從室溫至(1200oC) 隨NiO體積分數變化的關係圖………………………...……14 圖2-4 電極的極化曲線……………………………………………….16 圖2-5 反應氣體與產物在電極表面傳輸示意圖………….…………18. 圖2-6 反應氣體與生成物濃度分佈示意圖……………………….…19 圖2-7 電極量測組成的方式………………………………………….25 圖2-8 燃料電池的極化電流、電壓特性……………………...……..25 圖2-9 阻抗光譜表示圖 a)Nyquist plot b) Bode plot……………....27 圖2-10 (a) O2/O2電池等效電路圖(b) 在不同的氧分壓下量測到的阻抗圖譜…………………………………………………………29 圖2-11 SOFC MEA 的等效電路............................30 圖2-12 (a)GDI摹擬等效電路的結果(b) 在0.1Hz-100Hz頻率下燃料貢獻的表現參數....................................32 圖3-1 實驗流程圖………………………………………………….….34 圖3-2 電紡絲流程圖………………………………………………..…40 圖3-3 8YSZ纖維的製作…………………………………………….41 圖3-4 陽極反應五大步驟示意圖............................46 圖3-5 利用ALS模型對多孔混合氧電極一系列電荷轉換阻抗.......47 圖3-6 鐵弗外插法可得鐵弗直線區與交換電流i0………………….48 圖3-7 陽極極化曲線與鐵弗直線區…………………………………48 圖4-1 (a) N溶膠8500C 40min (b) 9500C 40min 燒結後X ray檢測分析圖……………………………………………………………53 圖4- 2 (a) C溶膠8500C 40min (b) 9500C 40min 燒結後X ray檢測分析圖………………………………………………………..…..55 圖4-3 CN溶膠(a) 8500C 40min (b)8500C 40min (c)10000C 60min燒結後X ray檢測分析圖……………………………………….57 圖4- 4 N溶膠、C溶膠及CN溶膠於(a)8500C 40min (b)9500C 40min 燒結後X ray檢測交叉比對分析圖…………………….……58 圖4- 5 C85040在SEM不同倍率下(a)5000倍(b)10000倍檢測分析結果………………………………………………………….…...60 圖4- 6 CN85060在SEM不同倍率下(a)5000倍(b)15000倍檢測分析結果…………………………………………………………....61 圖4- 7 N95040在SEM不同倍率下(a)5000倍(b)10000倍檢測分析 結果……………………………………………………………62 圖4- 8 CN100060在SEM不同倍率下(a)5000倍(b)10000倍檢測分析結果………………………………………………………..63 圖4- 9 CN100060得到的氧化鎳與氧化鈰顆粒約100nm ψ大小…64 圖4-10 8YSZ纖維在5500C 持溫120min燒結後成空孔形貌……67 圖4-11 8YSZ纖維在1100oC 60min燒結後在SEM不同倍率下(a)2000倍(b)5000倍(c)20000倍(d)30000倍檢測分析圖….68 圖4-12 8YSZ纖維在13000C 60min燒結後在SEM不同倍率下(a)2000倍(b)5000倍(c)20000倍(d)30000倍檢測分析圖…69 圖4-13 8YSZ纖維在15000C 60min燒結後在SEM不同倍率下(a)2000倍(b)5000倍(c)10000倍(d)30000倍檢測分析圖…70 圖4-14 比較8YSZ纖維在11000C 60min、13000C 60min、1500oC 60min燒結後X ray檢測分析圖……………………………71 圖4-15 在1300oC燒結溫度下,電解質8YSZ 塊材與陽極8YSZ (8YSZ纖維加8YSZ粉末)有良好的合………………….….71 圖4-16 8YSZ-NiO的配製流程………………………………………73 圖4-17 3M硝酸鎳酸鹼值4.2調整至5.4即產生沉澱……………..73 圖4-18 (a)(b)氧化鋯8YSZ纖維(c)(d)含浸3M硝酸鎳(e)(f) 含浸3M硝酸鎳0.2M硝酸鈰(g)(h) 含浸3M硝酸鎳0.35M硝酸鈰陽極結構的分布情形…………………………………………..77 圖4-19 圖顯示(a)SEM(SEI)之原始形貌圖。(b)鎳(c)鈰(d)鋯均勻分佈情形。.........................................................................................78 圖4-20 N3M、N5M、N7M、N9M分別之SEM分析圖……….…81 圖4-21 N3M、N5M、N7M、N9M分所得之極化電阻 Rp對溫度作圖.82 圖4-22 N3M、N5M、N7M、N9M分別之交流阻抗分析圖………85 圖4-23 N3M、N5M、N7M、N9M分別之電解質與陽極界面、陽極與電流收集白金網界面及陽極內部電化學之阻抗分析圖..86 圖4-24 測試N3M、N5M、N7M、N9M在800oC鐵弗曲線的結果……87 圖4-25 N3M、N5M、N7M、N9M分別測得之功率密度…………88 圖4-26 N3M、N5M、N7M、N9M在800oC測得之功率密度比較結果。……………………………………………………………89 圖4-27 N3M、N3MC5、N3MC10分別之SEM分析圖………….91 圖4-28 N3M、N3MC5、N3MC10分所得之極化電阻 Rp對溫度作圖……………………………………………………………..92 圖4-29 N3M、N3MC5、N3MC10分別之交流阻抗分析圖………94 圖4-30 N3M、N3MC5、N3MC10分別之電解質與陽極界面及陽極與電流收集白金網界面之阻抗分析圖……………………..95 圖4-31 測試N3M、N3MC5、N3MC10鐵弗曲線的結果………….96 圖4-32 N3M、N3MC5、N3MC10的功率密度量測結果…………98 表目錄 表2-1 還原氣氛中Ni-YSZ金屬陶瓷的物理性質參數……………..10 表2-2 氧化鈰的物理特性…………………………………………....22 表2-3 二甲基亞碸與水混合物的沸點(0.1MPa)…………………….33 表2-4 二甲基亞碸與水混合物的冰點……………………………....33 表 3-1 各藥品之規格與資料…………………………………….......37 表 3-2 實驗儀器之詳細資料………………………………………...37 表4-1 A 、B、CN金屬溶膠成份配置………………………….…51 表4-2 N金屬溶膠成份配置……………………………………..….51 表4-3 C金屬溶膠成份配置………………………………….….….52 表4-4 試片分析(8YSZ纖維重量計算)……………...……….….…74 表4-5 試片重量分析(8YSZ纖維重量與氧化鎳重量計算)……….74 表4-6 3M硝酸鎳與氧化鎳之液固比8.3 (纖維重量 0.002g)…….74 表4-7 1M硝酸鈰與氧化鈰之液固比8.3………………….…….....75 表4-8 N3M、N5M、N7M、N9M分別在500oC、600oC、700oC、800oC 的極化電阻……………………..……………….…...82 表4-9 N3M、N3MC5、N3MC10分別在500oC、600oC、700oC、800oC 的極化電阻………………………………………......93 表4-10 測試N3M、N3MC5、N3MC10在不同溫度之交換電流密度..............................................................................................98 表4-11 N3M、N3MC5、N3MC10在各溫度下操作的交換電流密度 ………………………………………………………………..99

第六章 參考文獻

[1] Butz B, Kruse P, Sto?rmer H, Gerthsen D, Mu?ller A, Weber A, Ivers-Tiffe?e E. Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2. Solid State Ionics 2006;177:3275.
[2] Kim SD, Moon H, Hyun SH, Moon J, Kim J, Lee HW. Nano-composite materials for high-performance and durability of solid oxide fuel cells. Journal of Power Sources 2006;163:392.
[3] Wang Y, Walter ME, Sabolsky K, Seabaugh MM. Effects of powder sizes and reduction parameters on the strength of Ni-YSZ anodes. Solid State Ionics 2006;177:1517.
[4] 呂家嘉. "固態氧化物燃料電池Ni含浸YSZ奈米纖維陽極之製備與特性量測". 材料科技研究所 臺灣科技大學, 民國96年7月.
[5] Holgado JP, Alvarez R, Munuera G. Study of CeO2 XPS spectra by factor analysis: Reduction of CeO2. Applied Surface Science 2000;161:301.
[6] Ozawa M, Loong CK. In situ X-ray and neutron powder diffraction studies of redox behavior in CeO2-containing oxide catalysts. Catalysis Today 1999;50:329.
[7] Qiao J, Sun K, Zhang N, Sun B, Kong J, Zhou D. Ni/YSZ and Ni-CeO2/YSZ anodes prepared by impregnation for solid oxide fuel cells. Journal of Power Sources 2007;169:253.
[8] R.Roberge P. Brief history of fuel cells.: www.corrosion-doctors.org/FuelCell/History.htm, 2000.
[9] Bieberle. A. The electrochemistry of SOFC Anode Experiments, Modeling and Simulations. Swiss Federal Institute of Technology. Murich Swiss Federal Institute of Technology
2000.
[10] 衣寶廉, editor 燃料電池 原理與應用: 五南圖書出版股份有限公司, 民國94年6月
[11] Takeguchi T, Kikuchi R, Yano T, Eguchi K, Murata K. Effect of precious metal addition to Ni-YSZ cermet on reforming of CH 4 and electrochemical activity as SOFC anode. Catalysis Today 2003;84:217.
[12] Zhu WZ, Deevi SC. A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering A 2003;362:228.
[13] Bieberle A, Gauckler LJ. Reaction mechanism of Ni pattern anodes for solid oxide fuel cells. Solid State Ionics 2000;135:337.
[14] 黃鎮江. 燃料電池: 全華科技圖書股份有限公司, 民國92年.
[15] Chen HT, Choi YM, Liu M, Lin MC. A theoretical study of surface reduction mechanisms of CeO2(111) and (110) by H2. ChemPhysChem 2007;8:849.
[16] Nolan M, Fearon JE, Watson GW. Oxygen vacancy formation and migration in ceria. Solid State Ionics 2006;177:3069.
[17] Costa-Nunes O, Gorte RJ, Vohs JM. Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO, and syngas. Journal of Power Sources 2005;141:241.
[18] Ihara M, Yokoyama C, Abudula A, Kato R, Komiyama H, Yamada K. Effect of the steam-methane ratio on reactions occurring on Ni/yttria-stabilized zirconia cermet anodes used in solid-oxide fuel cells. Journal of the Electrochemical Society 1999;146:2481.
[19] Romeo M, Bak K, Fallah E, Le Normand F, Hilaire L. XPS study of the reduction of cerium dioxide. Surface and Interface Analysis 1993;20:508.
[20] Ingo GM, Maschio RD, Scoppio L. Thermal and surface characterizations of 25.5 (wt.%) CeO2-2.5 Y2O3-72 ZrO2 fine powder. Surface and Interface Analysis 1992;18:661.
[21] Mogensen M, Sammes NM, Tompsett GA. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 2000;129:63.
[22] 胡興中. 觸媒原理與應用: 高立圖書有限公司, 民國94年1月.
[23] Xu S, Wang X. Highly active and coking resistant Ni/CeO2-ZrO2 catalyst for partial oxidation of methane. Fuel 2005;84:563.
[24] Fan J, Wu X, Ran R, Weng D. Influence of the oxidative/reductive treatments on the activity of Pt/Ce0.67Zr0.33O2 catalyst. Applied Surface Science 2005;245:162.
[25] Yokokawa H, Horita T, Sakai N, Yamaji K, Brito ME, Xiong YP, Kishimoto H. Protons in ceria and their roles in SOFC electrode reactions from thermodynamic and SIMS analyses. Solid State Ionics 2004;174:205.
[26] Xiao W, Guo Q, Wang EG. Transformation of CeO2(1 1 1) to Ce2O3( 0 0 0 1) films. Chemical Physics Letters 2003;368:527.
[27] Wu X, Liang Q, Weng D. Role of Surface Adsorption in Fast Oxygen Storage/Release of CeO2 - ZrO2 Mixed Oxides. Journal of Rare Earths 2007;25:416.
[28] Sa?nchez Escribano V, Ferna?ndez Lo?pez E, Panizza M, Resini C, Gallardo Amores JM, Busca G. Characterization of cubic ceria-zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy. Solid State Sciences 2003;5:1369.
[29] Bedrane S, Descorme C, Duprez D. Towards the comprehension of oxygen storage processes on model three-way catalysts. Catalysis Today 2002;73:233.
[30] Di Monte R, Fornasiero P, Graziani M, Kas?par J. Oxygen storage and catalytic NO removal promoted by CeO2-containing mixed oxides. Journal of Alloys and Compounds 1998;275-277:877.
[31] Zheng XC, Wang SP, Wang SR, Zhang SM, Huang WP, Wu SH. Preparation, characterization and catalytic properties of CuO/CeO 2 system. Materials Science and Engineering C 2005;25:516.
[32] Chen XJ, Khor KA, Chan SH. Suppression of carbon deposition at CeO2 -modified Ni/YSZ anodes in weakly humidified CH4 at 850°C. Electrochemical and Solid-State Letters 2005;8.
[33] Nakagawa N, Sagara H, Kato K. Catalytic activity of Ni-YSZ-CeO2 anode for the steam reforming of methane in a direct internal-reforming solid oxide fuel cell. Journal of Power Sources 2001;92:88.
[34] Park S, Gorte RJ, Vohs JM. Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Applied Catalysis A: General 2000;200:55.
[35] Perry Murray E, Tsai T, Barnett SA. A direct-methane fuel cell with a ceria-based anode. Nature 1999;400:649.
[36] Park S, Craciun R, Vohs JM, Gorte RJ. Direct oxidation of hydrocarbons in a solid oxide fuel cell I. Methane oxidation. Journal of the Electrochemical Society 1999;146:3603.
[37] 許威棋. 異價離子共掺雜對氧化鋯與氧化鈰之晶體結構與導電性之影響. 臺灣科技大學, 2005.
[38] Mogensen M, Skaarup S. Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics 1996;86-88:1151.
[39] Huang QA, Hui R, Wang B, Zhang J. A review of AC impedance modeling and validation in SOFC diagnosis. Electrochimica Acta 2007;52:8144.
[40] Takano K, Nagata S, Nozaki K, Monma A, Kato T, Kaga Y, Negishi A, Kato K, Inagaki T, Yoshida H, Hosoi K, Hoshino K, Akbay T, Akikusa J. Numerical simulation of a disk-type SOFC for impedance analysis under power generation. Journal of Power Sources 2004;132:42.
[41] 魏文德, editor 有機化工原料大全(中): 化學工業出版社, 1999.
[42] Li D, Wang Y, Xia Y. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Letters 2003;3:1167.
[43] Jiang SP, Zhang S, Zhen YD, Wang W. Fabrication and performance of impregnated Ni anodes of solid oxide fuel cells. Journal of the American Ceramic Society 2005;88:1779.
[44] Liu Z, Su Y, Varahramyan K. Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers. Thin Solid Films 2005;478:275.

QR CODE