簡易檢索 / 詳目顯示

研究生: 栗漢翔
Han-siang Li
論文名稱: 以氧化鋯和氧化鋯-氧化鎳薄膜為介電層進行單極式電阻切換研究
Unipolar Resistive Switching Investigation of ZrO2 and ZrO2-NiO Dielectric Layer
指導教授: 周賢鎧
Shyankay Jou
口試委員: 周振嘉
Chen-chia Chou
胡毅
Yi Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 76
中文關鍵詞: 電阻切換氧化鋯共濺鍍
外文關鍵詞: resistive switching, zirconia, co-sputtering
相關次數: 點閱:377下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究以Al作為上下電極,使用ZrO2以及NiO作為主要之中間層,製備
    電阻式記憶體元件,並透過調節ZrO2與NiO之比例以及鍍膜時氧氣之通量來改善元
    件之性質。
    當元件之介電層使用ZrO2時,透過調整濺鍍ZrO2之氧氣通量以及薄膜厚度,可
    以影響元件Forming process之電壓。本實驗使用氧氣通量較低之鍍膜條件以及較薄
    之ZrO2厚度可以降低Forming process之電壓。透過導電機制分析,Al/ZrO2/Al之
    Forming process可能與下電極所形成之原生氧化層有關。
    使用各種氧氣通量製備ZrO2,Al/ZrO2/Al元件均能展現出電阻切換之性質,在
    本實驗氧氣通量最低之條件下,元件顯示出高低電阻值差距隨掃描次數縮小之情
    形。在各種氧氣通量下,特徵電壓值均有重疊之現象。
    以各種NiO之混合量製備Al/ZrO2-NiO/Al元件進行量測,可以發現在各種氧氣通
    量以及NiO之混合量下,特徵電壓值重疊之現象均能獲得改善,但高低電阻值隨掃
    描次數縮小之情形更為明顯,使用更高之氧氣通量製備元件則可以改善此現象。由
    導電機制分析可以發現,NiO之含量與導電機制之變化有關,推測NiO應有參與元件
    之導電機制


    This thesis focuses on the investigation of RRAM (Resistive Switching Random
    Accessing Memory) using ZrO2 and ZrO2-NiO thin films as dielectric layer and Al as
    bottom and top electrodes. Performance of the RRAM can be improved by adjusting the
    amount of oxygen or NiO in the dielectric thin film.
    Through the manipulation of the oxygen content and the thickness of ZrO2 thin films,
    voltage of forming process could be reduced. Studying of conducting mechanism shows
    that the forming process might be related with the presence of native oxide of Al bottom
    electrode.
    Al/ZrO2/Al could successfully achieve resistive switching using variety of oxygen
    contents, However, the difference of the high and low resistance in repeated resistive
    switching would be reduced using the lowest content of oxygen content in this
    experiment. Vset and Vreset are overlapped no mater what oxygen content were used in the
    ZrO2 films.
    The problem of overlapping of Vset and Vreset could be solved when Al/ZrO2-NiO/Al
    were prepared by mixing up NiO with ZrO2. The difference of the high and low
    resistance in repeated resistive switching would be reduced, and it is solved by using
    higher oxygen content. Furthermore, NiO may be present in conducting path and change
    the conducting mechanism.

    中文摘要---------------------------------------------------------------------------------Ⅰ 英文摘要---------------------------------------------------------------------------------Ⅱ 誌 謝-------------------------------------------------------------------------------------Ⅲ 目 錄 ------------------------------------------------------------------------------------Ⅴ 圖目錄 ------------------------------------------------------------------------------------ⅥI 表目錄 -----------------------------------------------------------------------------------X 第一章前言------------------------------------------------------------------------------1 第二章文獻回顧-------------------------------------------------------------------------2 2.1.電阻式記憶體--------------------------------------------------------------------2 2.1.1. 單極式電阻式記憶體-----------------------------------------------3 2.1.2. 雙極式電阻式記憶體-----------------------------------------------4 2-2電阻轉換與導電機制-----------------------------------------------------------5 2.2.1. 燈絲導通機制-------------------------------------------------5 2.2.2. 離子遷徙機制--------------------------------------------------7 2.2.3. Space-Charge-Limited conduction 機制--------------------------8 2.2.4. Poole-Frenkel emission 機制----------------------------------------10 2.2.5. Schottky emission 機制----------------------------------------------11 2.2.6. Fowler-Nordheim tunneling 機制 --------------------------------12 2.3 ZrO2 之電阻切換研究---------------------------------------------------------12 2.3.1. 計量型氧化鋯(ZrO2)------------------------------------------------12 2.3.2. 非計量型氧化鋯(ZrOx) ------------------------------------------------15 2.3.3. 含有其他元素之氧化鋯------------------------------------------16 第三章實驗方法與步驟--------------------------------------------------------------21 V 3.1. 電漿-----------------------------------------------------------------------------21 3.1.1. 真空濺鍍製程-------------------------------------------------------21 3.1.2. 反應式濺鍍------------------------------------------------------------22 3.2 分析儀器介紹-----------------------------------------------------------------23 3.2.1. X 光繞射分析儀(X-ray Diffractometer)----------------------------23 3.2.2. 掃描式電子顯微鏡(Scanning Electron Microscope)--------------23 3.2.3. X 光光電子分析儀(X-ray Photoelectron Spectrum)------------23 3.3. 實驗儀器簡表------------------------------------------------------------------24 3.4. 實驗耗材簡表------------------------------------------------------------------25 3.5. 實驗流程-----------------------------------------------------------------------26 3.5.1. 基材清洗----------------------------------------------------------------27 3.5.2. 以濺鍍製程鍍膜------------------------------------------------------27 3.6. 量測與分析---------------------------------------------------------------29 3.6.1. 薄膜厚度量測---- -- --- --- --- --- -- --- - ---- --- -- --- --- --- --- -29 3.6.2. 薄膜成分分析-----------------------------------------------29 3.6.3. 電性量測- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -29 3.6.4. 結構觀察---------------------------------------------------------29 第四章結果與討論--------------------------------------------------------------30 4.1. ZrO2薄膜---------------------------------------------------------------30 4.2. Al/ZrO2/Al 元件之量測--------------------------------------------------36 4.2.1. Forming process研究----------------------------------------------------36 4.2.1. Al/ZrO2/Al 元件之量測------------------------------------------------38 4.3. 低氧量之ZrO2-NiO薄膜成分分析------------------------------------46 4.4. 低氧量之Al/ZrO2-NiO/Al元件量測--------------------------------------55 4.5. 高氧量之Al/ZrO2-NiO/Al元件量測--------------------------------------61 VI 4.6. Al/ZrO2/Al 以及Al/ZrO2-NiO/Al 之綜合討論----------------------------66 第五章結論--------------------------------------------------------------------70 文獻回顧------------- ------------ --------- --- ------------ --------- --- --------71

    [1] O. Auciello, “Science and Technology of Thin Films and Interfacial Layers in
    Ferroelectric and High-dielectric Constant Hterostructures and Application to
    Devices”, Journal of Applied Physics, vol. 100, issue. 5, pp. 051614, 2006.
    [2] R. C. Sousa, P. P. Freitas, “Influence of Ion Beam Milling Parameters on
    MRAM Switching”, IEEE Transactions on Magnetics, vol. 37, no. 4, pp.
    1973-1975, 2001.
    [3] A. Pirovano, L. Lacaita , Fabio Pellizzer, A. Kostylev, A. Benvenuti, R. Bez,
    “Low-Field Amorphous State Resistance and Threshold Voltage Drift in
    Chalcogenide Materials”, IEEE Transactions on Electron Devices, vol. 51, no.
    5, pp. 714-719, 2004.
    [4] A. Sawa, “ Resistive Switching in Metal Oxides”, Material Today, vol. 11, no.
    6, pp. 28-36, 2008.
    [5] C. Y. Lin, C. Y. Wu, C. C. Lin, T. Y. Tseng, “Memory Effect of RF Sputtered
    ZrO2 Thin Films”, Thin Solid Films, vol. 516, issue. 2-4, pp. 444-448, 2007.
    [6] P. Zhou, H. Shen, J. Li, L.Y. Chen, C. Gao, Y. Lin, T.A. Tang, “Resistance
    Switching Study of Stoichiometric ZrO2 Films for Non-volatile Memory
    Application”, Thin Solid Films, vol. 518, issue. 20, pp. 5652-5655, 2010.
    [7] B. Sun, Y. X. Liu, L. F. Liu, N. Xu, Y. Wang, X. Y. Liu, R. Q. Han, and J. F.
    Kang, ” Highly Uniform Resistive Switching Characteristics of TiN/ZrO2/Pt
    Memory Devices”, Journal of Applied Physics, vol. 105, issue. 6, pp. 061630,
    2009.
    [8] C. Schindler, S. C. P. Thermadam, R. Waser, Member, IEEE, and. N. Kozicki,
    Member, IEEE, “Bipolar and Unipolar Resistive Switching in Cu-Doped
    SiO2”, IEEE Transactions on Electron Devices, vol. 54, no. 10, pp. 2762-2768,
    2007.
    [9] L. Goux, G. Lisoni, X. P. Wang, Member, IEEE, M. Jurczak, and J. Wouters,
    Member, IEEE, “Optimized Ni Oxidation in 80-nm Contact Holes for
    Integration of Forming-Free and Low-Power Ni/NiO/Ni Memory Cells”, IEEE
    Transactions on Electron Devices, vol. 56, no. 10, pp. 2363-2368, 2009.
    [10] S. C. Chae, J. S. Lee, W. S. Choi, S. B. Lee, S. H. Chang, H. Shin, B. Kahng,
    and T. W. Noh, “Multilevel Unipolar Resistance Switching in TiO2 Thin
    Films”, Applied Physics Letters, vol. 95, issue. 9, pp. 093508, 2009.
    [11] H. Sim, D. J. Seong, M. Chang and H. Hwang, “Excellent Resistance
    Switching Characteristics of Pt/Single-crystal Nb-Doped SrTiO3 Schottky
    Junction”, IEEE, Non-Volatile Semiconductor Memory Workshop, pp. 88-89,
    2006.
    [12] J. Y. Son, Y. H. Shin, H. Kim, J. H. Cho and H. Jang, “Kelvin Probe Force
    73
    Microscopy for Conducting Nanobits of NiO Thin Films” Nanotechnology,
    vol. 21, issue. 21, pp. 215704, 2010.
    [13] G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, and S. Seo, “Observation
    of Electric-field Induced Ni Filament Channels in Polycrystalline NiOx Film”,
    Applied Physics Letters, vol. 91, issue. 22, pp. 222103, 2007.
    [14] S. Lee, H. Kim, D. J. Yun, S. W. Rhee, and K. Yong, “Resistive Switching
    Characteristics of ZnO Thin Film Grown on Stainless Steel for Flexible
    Nonvolatile Memory Devices”, Applied Physics Letters vol. 95, issue. 26, pp.
    262113, 2009.
    [15] Y. Li, S. Long, Member, IEEE, M. Zhang, Q. Liu, Student Member, IEEE, L.
    Shao, S. Zhang, Y. Wang, Q. Zuo, S. Liu, and M. Liu, Senior Member, IEEE,
    “Resistive Switching Properties of Au/ZrO2/Ag Structure for Low-Voltage
    Nonvolatile Memory Applications”, IEEE Electron Device Letters, vol. 31, no.
    2, pp. 117-119, 2010.
    [16] L. E. Yu, S. Kim, M. K. Ryu, S. Y. Choi, and Y. K. Choi, “ Structure Effects
    on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications”, IEEE
    Electron Device Letters, vol. 29, no. 4, pp.331-333, 2008.
    [17] B. Sun, L. Liu, N. Xu, B. Gao, Y. Wang, D. Han, X. Liu, R. Han, and J.
    Kang, ” The Effect of Current Compliance on the Resistive Switching
    Behaviors in TiN/ZrO2/Pt Memory Device”, Japanese Journal of Applied
    Physics vol. 48, issue. 4, pp. 04C061, 2009.
    [18] S.Z. Rahaman, S. Maikap, ” Low Power Resistive Switching Memory Using
    Cu Metallic Filament in Ge0.2Se0.8 Solid-electrolyte”, Microelectronics
    Reliability vol. 50, issue. 5, pp. 643-646, 2010.
    [19] J. R. Zhang, J. Yin, ”Resistive switching Devices Based on Cu2S Electrolyte”,
    IEEE International Nanoelectronics Conference, pp. 1020-1022, 2008.
    [20] N. F. Mott and R. W. Gurney, “Electronic Processes in Ionic Crystal”, 1964.
    [21] 王之賢, “鐵酸鉍薄膜之電阻轉換效應”國立清華大學材料科學與工程學系
    碩士論文, 民國98 年。
    [22] Y. Xia, W. He, L. Chen, X. Meng, and Z. Liu, “Field-induced Resistive
    Switching Based on Space-charge-limited Current”, Applied Physics Letters
    vol. 90, issue. 2, pp. 022907 , 2007.
    [23] S. M. Sze, Physics of Semiconductor Devices, 2nd edition, John Wiley and
    Sons, New York, 1981.
    [24] B. G. Streetman, S. K. Banerjee, Solid State Electronic Device, 6th edition,
    Pearson Prentice Hall, New Jersey, 2006.
    [25] R. H. Fowler and L. W. Nordheim, Proceedings of the Royal Society of
    London. Series A, Containing Papers of a Mathematical and Physical
    74
    Character, vol. 119, no. 781, pp. 173-181, 1928
    [26] Y. Bernard, P. Gonon, and V. Jousseaume, “Resistance Switching of Cu/SiO2
    Memory Cells Studied Under Voltage and Current-driven Modes”, Applied
    Physics Letters, vol. 96, issue. 19, pp. 193502, 2010.
    [27] Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu,
    “Controllable Growth of Nanoscale Conductive Filaments in Solid-
    Electrolyte-Based ReRAM by Using a Metal Nanocrystal Covered Bottom
    Electrode”, American Chemical Society, vol. 4, no. 10, pp. 6162-6168, 2010.
    [28] X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin, and T. A. Tang,
    “Reproducible Unipolar Resistance Switching in Stoichiometric ZrO2 Films”,
    Applied Physics Letters, vol. 90, issue. 18, pp. 183507, 2007.
    [29] T. W. Hickmott, “Formation of Ohmic contacts: A breakdown mechanism in
    metal-insulator-metal structures”, Journal of Applied Physics, vol. 100, issue.
    8, pp. 083712, 2006.
    [30] D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo, and I. K.
    Yoo, “Resistance Switching of the Nonstoichiometric Zirconium Oxide for
    Nonvolatile Memory Applications”, IEEE Electron Device Letters, vol. 26, no.
    9, pp. 719-721, 2005.
    [31] C. Schindler, G. Staikov, and R. Waser, “Electrode Kinetics of Cu–SiO2-based
    Resistive Switching Cells: Overcoming the Voltage-time Dilemma of
    Electrochemical Metallization Memories”, Applied Physics Letters, vol. 94,
    issue. 7, pp. 072109 , 2009.
    [32] S. Y. Wang, D. Y. Lee, T. Y. Huang, J. W. Wu and T. Y. Tseng, “Controllable
    Oxygen Vacancies to Enhance Resistive Switching Performance in a
    ZrO2-based RRAM with Embedded Mo Layer”, Nanotechnology, vol. 21,
    issue. 49, pp. 495201, 2010.
    [33] S. Y. Wang, D. Y. Lee, T. Y. Tseng and C. Y. Lin “Effects of Ti Top
    Electrode Thickness on The Resistive Switching Behaviors of Rf-sputtered
    ZrO2 Memory Films”, Applied Physics Letters, vol. 95, issue. 11, pp. 112904,
    2009.
    [34] Q. Liu, W. Guan, S. Long, M. Liu, S. Zhang, Q. Wang, and J. Chen,”
    Resistance Switching of Au-implanted-ZrO2 Film for Nonvolatile Memory
    Application”, Journal of Applied Physics vol. 104, issue. 11, pp. 114514 ,
    2008.
    [35] N. F. Mott, Electronic Processes in Non-Crystalline Materials, Clarendon Press,
    Oxford, 1979.
    [36] W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, “On the Resistive Switching
    Mechanisms of Cu/ZrO2:Cu/Pt”, Applied Physics Letters vol. 93, issue. 22, pp.
    75
    223506, 2008.
    [37] A. Bid, A. Bora, and A. K. Raychaudhuri, “Temperature Dependence of The
    Resistance of Metallic Nanowires of Diameter ≧ 15 nm: Applicability of
    Bloch-Gruneisen Theorem”, Physical Review B , vol. 74, issue. 3, pp. 035426,
    2006.
    [38] B. Chapman, Glow discharge Process , John Wiley & Sons, New York,
    1982.
    [39] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of
    X-ray Photoelectron Spectroscopy, Perkin Elmer, Eden Prairie, Minnesota,
    1992.
    [40] X. Cao, X. Li, X. Gao, W. Yu, X. Liu, Y. Zhang, L. Chen, and X. Cheng,
    “Forming-free Colossal Resistive Switching Effect in Rare-earth-oxide Gd2O3
    Films for Memristor Applications”, Journal of Applied Physics vol. 106, issue.
    7, pp. 073723 , 2009.
    [41] T. M. Pan, K. M. Chen, and C. H. Lu, “Resistive Switching Behavior in the
    Ru/Y2O3/TaN Nonvolatile Memory Device”, Electrochemical and Solid-State
    Letters, vol. 14, issue. 1, pp. H27-H29, 2011.
    [42] Q. Mao1, Z. Ji and J. Xi1, “Realization of Forming-free ZnO-based Resistive
    Switching Memory by Controlling Film Thickness”, Journal of Physics D:
    Applied Physics. vol. 43, issue. 39, pp. 395104, 2010.
    [43] B. J. Choi, D. S. Jeong, S. K. Kim C. Rohde S. Choi, J. H. Oh, H. J. Kim, C. S.
    Hwanga_K. Szot and R. Waser B. Reichenberg S. Tiedke, “Resistive
    Switching Mechanism of TiO2 Thin Films Grown by Atomic-layer
    Deposition”, Journal of Applied Physics, vol. 98, issue. 3, pp. 033715, 2005.
    [44] Ch. Walczyk, Ch. Wenger, R. Sohal, M. Lukosius, A. Fox, J. Dąbrowski, D.
    Wolansky, B. Tillack, H.-J. Mussig, and T. Schroeder, “Pulse-induced
    Low-power Resistive Switching in HfO2 Metal-insulator-metal Diodes for
    Nonvolatile Memory Applications”, Journal of Applied Physics, vol. 105,
    issue. 11, pp. 114103, 2009.
    [45] J. J. Yang, C. Ji, Y. Yang, Y. A. Chang, F. X. Liu, B. Pant, and E. Schultz,
    “Thickness Determination of Ultrathin Oxide Films and Its Application in
    Magnetic Tunnel Junctions”, Journal of Electronic Materials, Vol. 35, issue. 12,
    pp. 2142-2146, 2006.
    [46] Stanley M. Howard, Free Energy of Formation of Binary Compounds, MIT
    Press, Cambridge, 1971.
    [47] L. Y. Tao, S. B. Long, H. B. LAu, L. Qi, W. Qin, W. Yan, Z. Sen, W. T Lian ,
    L. Su, and L. Ming, ” Investigation of Resistive Switching Behaviours in
    WO3-based RRAM Devices”, Chinese. Physics. B, Vol. 20, issue. 1, 017305,
    76
    2011.
    [48] S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H.
    Shin, D. W. Kim, C. U. Jung, S. Seo, M. J. Lee, and T. W. Noh, “Random
    Circuit Breaker Network Model for Unipolar Resistance Switching”,
    Advanced Material, vol. 20, issue. 6, pp. 1154-1159, 2008.
    [49] Q. Q. Sun, J. J. Gu, L. Chen, P. Zhou, P. F. Wang, S. J. Ding, and W. Zhang,
    “Controllable Filament With Electric Field Engineering for Resistive
    Switching Uniformity”, IEEE Electron Device Letters, vol. 32, issue. 9,
    pp.1167-1169, 2011.
    [50] C. Morant, J.M. Sanz, L. Galan, L. Soriano and F. Rueda, “An XPS Study of
    The Interaction of Oxygen With Zirconium”, Surface Science, vol. 218, issue.
    2-3, pp. 331-345, 1989.
    [51] S. Oswald and W. Bruckner, “XPS Depth Profile Analysis of
    Non-stoichiometric NiO Films”, Surface and Interface Analysis, vol.36, issue.
    1, pp. 17-22, , 2004.
    [52] M. Reddy, B. Chowdhury, E.P. Reddy, A. Ferna’ndez, “Characterization of
    MoO/TiO2 –ZrO2 Catalysts by XPS and Other Techniques”, Journal of
    Molecular Catalysis A: Chemical, vol. 162, issue. 1-2, pp. 431–441, 2000.
    [53] M. Reddy, B. Chowdhury, G. Smirniotis, “An XPS study of the dispersion of
    MoO3 on TiO2–ZrO2, TiO2–SiO2, TiO2–Al2O3, SiO2–ZrO2, and
    SiO2–TiO2–ZrO2 mixed oxides”, Applied Catalysis A: General, vol. 211, pp.
    19–30, issue. 1, 2001.
    [54] M. Chun, M. J. Moon, J. Park, and Y. C. Kang, “Physical and Chemical
    Investigation of Substrate Temperature Dependence of Zirconium Oxide Films
    on Si(100)”, Bulletin of Korean Chemistry Society, vol. 30, no. 11, pp.
    2729-2734, 2009.
    [55] W. L. Jang, Y. M. Lu, W. S. Hwang, “Effect of Different Atmospheres on The
    Electrical Stabilization of NiO Films”, Vacuum, vol. 83, no. 3, pp. 596–598,
    2009
    [56] 利嘉仁, “共濺鍍法沉積銅摻雜二氧化矽薄膜的電阻切換特性之研究”國立
    台灣科技大學工程科技研究所碩士論文, 民國99 年。

    QR CODE