簡易檢索 / 詳目顯示

研究生: 吳志禹
Jhih-Yu Wu
論文名稱: 開發應用於高安全性鋰離子電池之新穎具精準活化溫度之高分子添加助劑
Development of novel polymer additives with precise activation temperature for highly safe lithium ion battery
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 陳崇賢
Chorng-Shyan Chern
楊純誠
Chun-Chen Yang
范國泰
Quoc-Thai Pham
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 110
中文關鍵詞: 鋰離子電池正極材料安全性添加劑寡聚物
外文關鍵詞: Lithium-ion battery, cathode active materials, safety, additives, oligomers
相關次數: 點閱:589下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究擬開發一新穎安全添加劑,其包含一精準活化溫度為120 ℃之封閉型多元異氰酸酯(B3)以及藉由對苯二胺(PDA)與雙馬來醯亞胺(BMI)進行邁克爾加成反應產生之衍生物(BA2),分析分為兩個部份,第一部份利用差示掃描量熱法(DSC)以非恆溫模式探討BMI/PDA與BA2/B3的反應特徵溫度及放熱量,以了解其反應動力學和機制,並利用自由模型法和最適化模型法進行反應動力學分析獲得動力學參數,包括活化能(E)、頻率因子(A)、微分模型[f(α)],此外,透過獲得的動力學參數重建實驗數據來驗證其可信度。
第二部份則將不同比例的高分子BA2-B3作為正極添加劑加入鋰離子電池中,透過循環伏安法(CV)、常/高溫充放電(Charge/Discharge test)、循環壽命(Cycling test)與倍率性能(C-rate)等測試來初步分析其電化學性質,並且與參考商用安全性添加劑製備而成的Benchmark進行比較。此外,使用熱重分析(TGA)以及掃描式電子顯微鏡(SEM)分析添加劑的熱穩定性與電極性質。
研究結果顯示,BA2-B3添加劑相比於Benchmark熱裂解溫度比較低,加入電池後,BA2-B3添加劑在1 %的添加量下表現出與Blank NCM811近似的常溫循環性能,並且優於1 % Benchmark添加劑,最後,從SEM分析可得出BA2-B3添加劑與Blank NCM811的表面型態不同,並且在循環過程中能使材料保持更完整的結構與表面型態,整體而言,BA2-B3添加劑能提高鋰離子電池之安全性並且不過度影響電池性能表現,具有作為正極材料安全性添加劑可行性。


This study aimed to develop a novel additive, which comprises a blocked isocyanate (B3) with the precise activation temperature at 120 °C and a BMI derivative prepared by the Michael addition reaction of BMI with p-Phenylenediamine (PDA). This study was divided into two parts. The first part was from the kinetic perspective to use the non-isothermal method to characterize the reaction temperature and reaction heat of the BMI/PDA and BA2/B3 systems by using differential scanning calorimetry (DSC). The reaction kinetics and activation energy were then determined by model free method and model fitting method. In addition, the reliability of the experimental data was verified by reconstructing model from the obtained kinetic parameters.
The second part, additives with different BA2-B3 loadings were added to positive electrode of the lithium-ion batteries. The electrochemical properties of cells were then characterized by cyclic voltammetry analysis (CV), charge/discharge test and cycling test. These results were also compared with the Benchmark, a commercially available polymer additive, and the Blank (without any additive inside). In addition, the thermal stability and electrode properties of the additives were characterized by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM).
The results showed that the BA2-B3 additive had lower thermal stability as compared to the Benchmark. After cycling at room temperature, the cell with 1 wt% BA2-B3 additive showed better cycling performance than 1 wt% Benchmark, while it exhibited a comparable cycling performance with the Blank. Finally, SEM images illustrated that the BA2-B3 additive had a different surface morphology from that of the Blank NCM811 active material pellets, and BA2-B3 could maintain a more stable structure and surface morphology of the cathode active materials during cycling. BA2-B3 may represent a promising safety additive candidate for lithium-ion battery.

摘要 I Abstract II 第一章 緒論 1 1.1 前言 1 1.2 研究背景 3 1.2.1 鋰離子電池工作原理 3 1.2.2 正極材料 4 1.2.3 負極材料 6 1.2.4 電解液 8 1.2.5 隔離膜 8 1.3 研究動機 10 第二章 文獻回顧 12 2.1 三元正極材料LiNi1-x-yCoxMnyO2 (NCM)之摻雜改質 12 2.2 無裂痕單晶NCM正極材料 16 2.3 正極添加劑 22 第三章 實驗藥品、設備與方法 27 3.1 實驗藥品 27 3.2 實驗設備 29 3.3 實驗方法 30 3.3.1 DSC樣品製備 31 3.3.2 TGA樣品製備 32 3.3.3 添加劑製備 33 3.3.4 漿料與電極製備 34 3.3.5 鈕扣型電池組裝 35 第四章 結果與討論 37 4.1 差示掃描量熱儀分析 37 4.1.1 非恆溫反應 37 4.1.2 非恆溫動力學分析( Non-isothermal kinetics analysis ) 42 4.1.3 BMI/PDA = 1/2與BA2/B3 = 3/2(莫爾比)之分峰擬合 48 4.1.4 BMI/PDA = 1/2與BA2/B3 = 3/2(莫爾比)之非恆溫最適化模型法(model-fitting method) 51 4.1.5 BMI/PDA = 1/2與BA2/B3 = 3/2(莫爾比)非恆溫重建模型(Reconstruct models) 62 4.1.6 反應機制分析 64 4.2 熱重量分析儀 66 4.3 循環伏安法(CV)分析 68 4.3.1 Blank NCM811循環伏安法 68 4.3.2 BA2/B3高分子添加劑樣品循環伏安法 69 4.3.3 Benchmark樣品循環伏安法 72 4.4 電池常溫下充放電、循環壽命 74 4.4.1 常溫初始充放電測試 75 4.4.2 常溫充放電測試 76 4.4.3 常溫循環壽命測試 78 4.5 倍率性能 80 4.6 電池在高溫下(55 ℃)之充放電、循環壽命 82 4.6.1 電池在高溫(55 ℃)之充放電測試 82 4.6.2 電池在高溫下(55 ℃)之循環壽命測試 83 4.7 場發射掃描式電子顯微鏡 86 4.7.1 Blank NCM811極片之SEM分析 87 4.7.2 含添加劑極片之SEM分析 88 第五章 結論 89 參考文獻 90

1. Whittingham, M.S., Electrical energy storage and intercalation chemistry. Science, 1976. 192(4244): p. 1126-1127.
2. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
3. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. 2011, World Scientific. p. 171-179.
4. Feng, X., et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018. 10: p. 246-267.
5. Pfleging, W., A review of laser electrode processing for development and manufacturing of lithium-ion batteries. Nanophotonics, 2018. 7(3): p. 549-573.
6. Manthiram, A., A reflection on lithium-ion battery cathode chemistry. Nature communications, 2020. 11(1): p. 1-9.
7. Tran, M.-K., et al., Comparative study of equivalent circuit models performance in four common lithium-ion batteries: LFP, NMC, LMO, NCA. Batteries, 2021. 7(3): p. 51.
8. Zhang, S.S., Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Materials, 2020. 24: p. 247-254.
9. Wang, B., et al., Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries? Journal of Materials Chemistry A, 2021. 9(23): p. 13540-13551.
10. Liu, J., et al., Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Materials Today, 2021. 43: p. 132-165.
11. Radin, M.D., et al., Narrowing the gap between theoretical and practical capacities in Li‐ion layered oxide cathode materials. Advanced Energy Materials, 2017. 7(20): p. 1602888.
12. Kucinskis, G., G. Bajars, and J. Kleperis, Graphene in lithium ion battery cathode materials: A review. Journal of Power Sources, 2013. 240: p. 66-79.
13. Liu, W., et al., Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries. Angewandte Chemie-International Edition, 2015. 54(15): p. 4440-4457.
14. Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
15. Maleki Kheimeh Sari, H. and X. Li, Controllable cathode–electrolyte interface of Li [Ni0. 8Co0. 1Mn0. 1] O2 for lithium ion batteries: a review. Advanced Energy Materials, 2019. 9(39): p. 1901597.
16. Yu, H. and H. Zhou, High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. The journal of physical chemistry letters, 2013. 4(8): p. 1268-1280.
17. Xu, H., et al., Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries. Journal of Power Sources, 2022. 529: p. 231219.
18. Mahmood, N., T. Tang, and Y. Hou, Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Advanced Energy Materials, 2016. 6(17): p. 1600374.
19. Palacin, M.R., Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews, 2009. 38(9): p. 2565-2575.
20. Wu, Y., E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries. Journal of power sources, 2003. 114(2): p. 228-236.
21. Zhang, H., I. Hasa, and S. Passerini, Beyond Insertion for Na‐Ion Batteries: Nanostructured Alloying and Conversion Anode Materials. Advanced Energy Materials, 2018. 8(17): p. 1702582.
22. Han, J.-G., et al., An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes. Journal of Power Sources, 2020. 446: p. 227366.
23. Aravindan, V., et al., Lithium‐ion conducting electrolyte salts for lithium batteries. Chemistry–A European Journal, 2011. 17(51): p. 14326-14346.
24. Hall, D.S., J. Self, and J. Dahn, Dielectric constants for quantum chemistry and Li-ion batteries: solvent blends of ethylene carbonate and ethyl methyl carbonate. The Journal of Physical Chemistry C, 2015. 119(39): p. 22322-22330.
25. Xing, L., et al., Deciphering the ethylene carbonate–propylene carbonate mystery in Li-ion batteries. Accounts of chemical research, 2018. 51(2): p. 282-289.
26. Huang, X., Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry, 2011. 15(4): p. 649-662.
27. Francis, C.F., I.L. Kyratzis, and A.S. Best, Lithium‐ion battery separators for ionic‐liquid electrolytes: a review. Advanced Materials, 2020. 32(18): p. 1904205.
28. Jeong, H.-S., S.C. Hong, and S.-Y. Lee, Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly (vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. Journal of Membrane Science, 2010. 364(1-2): p. 177-182.
29. Jiang, X., et al., Novel ceramic-grafted separator with highly thermal stability for safe lithium-ion batteries. ACS Applied Materials & Interfaces, 2017. 9(31): p. 25970-25975.
30. Costa, C.M., M.M. Silva, and S. Lanceros-Méndez, Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. Rsc Advances, 2013. 3(29): p. 11404-11417.
31. Venugopal, G., et al., Characterization of microporous separators for lithium-ion batteries. Journal of power sources, 1999. 77(1): p. 34-41.
32. Wu, M.-S., et al., Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests—short-circuit tests. Electrochimica acta, 2004. 49(11): p. 1803-1812.
33. Diouf, B. and R. Pode, Potential of lithium-ion batteries in renewable energy. Renewable Energy, 2015. 76: p. 375-380.
34. Zhu, J., T. Wierzbicki, and W. Li, A review of safety-focused mechanical modeling of commercial lithium-ion batteries. Journal of Power Sources, 2018. 378: p. 153-168.
35. Liu, S., L. Xiong, and C. He, Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. Journal of Power Sources, 2014. 261: p. 285-291.
36. Abraham, D., et al., Surface changes on LiNi0. 8Co0. 2O2 particles during testing of high-power lithium-ion cells. Electrochemistry communications, 2002. 4(8): p. 620-625.
37. Susai, F.A., et al., Improving Performance of LiNi0.8Co0.1Mn0.1O2 Cathode Materials for Lithium-Ion Batteries by Doping with Molybdenum-Ions: Theoretical and Experimental Studies. Acs Applied Energy Materials, 2019. 2(6): p. 4521-4534.
38. Sharifi-Asl, S., et al., Oxygen Release Degradation in Li-Ion Battery Cathode Materials: Mechanisms and Mitigating Approaches. Advanced Energy Materials, 2019. 9(22).
39. Kim, U.-H., et al., Extending the battery life using an Al-doped Li [Ni0. 76Co0. 09Mn0. 15] O2 cathode with concentration gradients for lithium ion batteries. ACS Energy Letters, 2017. 2(8): p. 1848-1854.
40. Kim, U.H., et al., Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application. Advanced Energy Materials, 2016. 6(22).
41. Zhou, F., X.M. Zhao, and J.R. Dahn, Synthesis, Electrochemical Properties, and Thermal Stability of Al-Doped LiNi1/3Mn1/3Co(1/3-z)AlzO2 Positive Electrode Materials. Journal of the Electrochemical Society, 2009. 156(4): p. A343-A347.
42. Watanabe, S., et al., Capacity fading of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge-discharge cycling on the suppression of the micro-crack generation of LiAlyNi1-x-yCoxO2 particle). Journal of Power Sources, 2014. 260: p. 50-56.
43. Kondrakov, A.O., et al., Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries. Journal of Physical Chemistry C, 2017. 121(6): p. 3286-3294.
44. Liu, H., et al., Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes. Nano Letters, 2017. 17(6): p. 3452-3457.
45. Xu, Z.R., et al., Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries. Journal of Materials Chemistry A, 2018. 6(44): p. 21859-21884.
46. Myung, S.T., et al., Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. Acs Energy Letters, 2017. 2(1): p. 196-223.
47. Fan, X.M., et al., Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy, 2020. 70.
48. Sun, H.H. and A. Manthiram, Impact of Microcrack Generation and Surface Degradation on a Nickel-Rich Layered Li Ni0.9Co0.05Mn0.05 O-2 Cathode for Lithium-Ion Batteries. Chemistry of Materials, 2017. 29(19): p. 8486-8493.
49. Ryu, H.H., et al., Microstructural Degradation of Ni-Rich Li NixCoyMn1-x-y O-2 Cathodes During Accelerated Calendar Aging. Small, 2018. 14(45).
50. Yang, H.P., et al., Simultaneously Dual Modification of Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries. Advanced Functional Materials, 2019. 29(13).
51. Liu, H.M., et al., Towards an understanding of the role of hyper-branched oligomers coated on cathodes, in the safety mechanism of lithium-ion batteries. Rsc Advances, 2014. 4(99): p. 56147-56155.
52. Lin, C.C., et al., Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode. Electrochimica Acta, 2013. 101: p. 11-17.
53. Gabbott, P., Principles and applications of thermal analysis. 2008: John Wiley & Sons.
54. Vyazovkin, S., et al., ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica acta, 2011. 520(1-2): p. 1-19.
55. Pham, Q.-T., et al., Mechanisms and kinetics of non-isothermal polymerization of N, N′-bismaleimide-4, 4′-diphenylmethane with barbituric acid in dimethyl sulfoxide. Thermochimica Acta, 2019. 676: p. 139-144.
56. Pham, Q.-T., et al., Kinetics of nucleation-controlled polymerization of N, N′-bismaleimide-4, 4′-diphenylmethane/barbituric acid. Thermochimica Acta, 2016. 641: p. 1-7.
57. Khawam, A. and D.R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals. The journal of physical chemistry B, 2006. 110(35): p. 17315-17328.
58. Rolph, M.S., et al., Blocked isocyanates: From analytical and experimental considerations to non-polyurethane applications. Polymer Chemistry, 2016. 7(48): p. 7351-7364.
59. Mühlebach, A., Pyrazoles—A novel class of blocking agents for isocyanates. Journal of Polymer Science Part A: Polymer Chemistry, 1994. 32(4): p. 753-765.
60. Wicks, D.A. and Z.W. Wicks Jr, Blocked isocyanates III: Part A. Mechanisms and chemistry. Progress in Organic Coatings, 1999. 36(3): p. 148-172.
61. Prime, R.B., et al., Thermogravimetric analysis (TGA). Thermal analysis of polymers: Fundamentals and applications, 2009: p. 241-317.
62. Kissinger, P.T. and W.R. Heineman, Cyclic voltammetry. Journal of chemical education, 1983. 60(9): p. 702.
63. Schweidler, S., et al., Investigation into mechanical degradation and fatigue of high-Ni NCM cathode material: a long-term cycling study of full cells. ACS applied energy materials, 2019. 2(10): p. 7375-7384.
64. Jiang, M., et al., A Review of Degradation Mechanisms and Recent Achievements for Ni‐Rich Cathode‐Based Li‐Ion Batteries. Advanced Energy Materials, 2021. 11(48): p. 2103005.
65. Ryu, H.-H., et al., Capacity fading of Ni-rich Li [Ni x Co y Mn1–x–y] O2 (0.6≤ x≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chemistry of materials, 2018. 30(3): p. 1155-1163.
66. Wu, Y.S., et al., Coating of a Novel Lithium-Containing Hybrid Oligomer Additive on Nickel-Rich LiNi0. 8Co0. 1Mn0. 1O2 Cathode Materials for High-Stability and High-Safety Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 2022. 10(22): p. 7394-7408.

QR CODE