簡易檢索 / 詳目顯示

研究生: 蕭煒霖
Wei-Lin Hsiao
論文名稱: 雙向控制系統之強健適應性控制研究
Robust Adaptive Control of a Bilateral Control System
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃安橋
An-Chyau Huang
張以全
I-Tsyuen Chang
徐勝均
Sheng-Dong Xu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 84
中文關鍵詞: 主從遙控系統不確定項阻抗控制滑動控制強健適應性控制
外文關鍵詞: Master-slave teleoperation system, uncertainties, impedance control, sliding mode control, robust adaptive control
相關次數: 點閱:253下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了改善模型不確定項對雙邊主從控制系統造成的影響,將滑動控制理論納入進行位置追跡控制器設計是一個有效可行的方法。然而使用此法需事先得知系統未知參數和干擾的界限,在實際應用上有其限制。本研究透過適應性控制法則,不斷於線上學習系統的未知緩時變參數,並保證所估測之非線性受控體參數為均勻最終有界,因此該控制器不需精確的系統參數。藉由加入強健控制設計概念,整體的控制架構具備強健性與線上調整控制器係數的優勢,並可改善傳統強健控制的缺點;穩健項部份則選用飽和函數以減緩顫振現象。本研究於主端使用具備能量耗散效果之阻抗控制器以呈現力量回饋,另外考量兩種強健控制法進行主從位置追跡目的,同時輔以Lyapunov-like穩定度分析確保閉迴路系統穩定,證明輸出誤差皆可漸進收斂。最後於自製的手指力回饋主從遙控系統實現所提出之雙邊位置/力量控制律。實驗結果證實所設計的阻抗控制器能有效進行主端力量追跡目標,考量實際系統安裝扭轉彈簧造成的非線性影響所設計之強健適應性控制器可有效解決不確定性問題以及獲得比單純使用強健控制設計較佳之位置追跡結果。當系統動態行為因於從端加入外在負載而改變時,此控制器亦展現較佳之強健性。


To handle the influences of model uncertainties in master-slave teleoperation systems, taking sliding mode control strategy into the bilateral position tracking control design has been proven as an effective and feasible method. However, this method has a practical limitation that the bounds of unidentified parameters and external disturbances must be known a priori. This study presents a robust adaptive controller (RAC) design for a fingertip bilateral control system. The presented RAC method combines the advantages of sliding mode control and adaptive control, which guarantees the estimation of nonlinear plant parameters to be uniformly ultimately bounded by updating the slow time-varying system parameters on-line and an accurate system model is not needed. A saturation function is applied to alleviate the chattering phenomenon for robust term adjustment. In the proposed bilateral control design, an impedance controller is used to provide desired energy dissipation characteristics for bilateral force tracking control. A classical robust control and the RAC design are applied to analyze the bilateral position tracking control performance and the closed-loop stability and asymptotic output error convergence is ensured via Lyapunov analysis. The experiments on an 1-DOF master/slave bilateral teleoperation system demonstrate that the presented bilateral control method can provide satisfactory position/force tracking control performance with consideration of the friction effects from torsion spring mechanisms. The proposed control design also shows its superior bilateral position tracking performance when the system dynamics are changed by adding unknown payloads to the slave side of the bilateral system.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號表 X 1緒論 1 2系統模型與系統架設 8 2.1雙向控制系統模型 8 2.2系統架設 9 3控制演算法 13 3.1雙向控制系統運作原理 13 3.2阻抗控制(Impedance Control) 15 3.3滑動控制(Sliding Mode Control) 16 3.4強健適應性控制(Robust Adaptive Control) 22 4實驗結果 33 4.1滑動控制器-自由運動:薄邊界層vs.厚邊界層 35 4.1.1滑動控制器─自由運動:薄邊界層 35 4.1.2滑動控制器─自由運動:厚邊界層 38 4.2阻抗控制器&滑動控制器-接觸運動:軟木塞vs.保麗龍 41 4.2.1阻抗控制器&滑動控制器─硬物件:軟木塞 41 4.2.2阻抗控制器&滑動控制器─軟物件:保麗龍 44 4.3強健適應性控制-自由運動:是否考慮系統的非線性項 46 4.3.1強健適應性控制器─自由運動:未考慮系統的非線性項 47 4.3.2強健適應性控制器─自由運動:考慮系統的非線性項 51 4.4阻抗控制器&強健適應性控制器-接觸運動 55 4.4.1阻抗控制器&強健適應性控制器─硬物件:軟木塞 55 4.4.2阻抗控制器&強健適應性控制器─軟物件:保麗龍 58 4.5從端加裝未知負載-滑動控制器vs.強健適應性控制器 60 4.5.1滑動控制器─從端加裝未知負載Ⅰ&未知負載Ⅱ 60 4.5.2強健適應性控制器─從端加裝未知負載Ⅰ&未知負載Ⅱ 63 4.5.3滑動控制器─從端加裝未知負載Ⅰ&Ⅱ─增加穩健項增益 65 5 結論與未來方向 68 附錄A 滑動控制器之頻域分析 70 附錄B 力量感測器校正 76 參考文獻 78

[1] A. D. Bowen, D. R. Yoerger, and C. Taylor, “Field trials of the Nereus hybrid underwater robotic vehicle in the challenger deep of the Mariana Trench,” in Proc. of the Oceans MTS/IEEE Conference, Biloxi, Mississippi, October. 26-29, 2009.
[2] W. H. Zhu, and S. E. Salcudean, “Stability guaranteed teleoperation: An adaptive motion/force control approach,” IEEE Trans on Automatic Control. 2000.
[3] T. B. Sheridan, “Human supervisory control of robot systems,” in Proc. of Robotic and Automation, San Francisco, 1986.
[4] B. Hannaford, “A design framework for teleoperators with kinesthetic feedback,” IEEE International Conference on Robotic and Automation, 1989.
[5] P. F. Hokayem, and M. W. Spong, “Bilateral teleoperation: An historical survey,” Automatica, Feb. 2005.
[6] W. Wei, and Y. Kui, “Teleoperated manipulator for leak detection of sealed radioactive sources,” in Proc. of the IEEE International Conference on Robotics and Automation, New Orleans, LA, April. 2004.
[7] A. Albu-Schaffer, W. Bertleff, and B. Rebele, “ROKVISS-Robotics component verification on ISS current experimental results on parameter identification,” in Proc. of the IEEE International Conference on Robotics and Automation, Orlando, Florida, May. 2006.
[8] K. Landzettel, A. Albu-Schaffer, and B. Brunner, “ROKVISS-Verification of advanced light weight robotic joints and tele-presence concepts for future space missions,” in Proc. of the ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, The Netherlands, Nov. 28-30, 2006.
[9] H. W. Stone, and G. Edmonds, “HAZBOT: A hazardous materials emergency response mobile robot,” in Proc. of the IEEE International Conference on Robotics and Automation, Nioe, France, May. 1992.
[10] R. W. Daniel, and P. R. McAree, “Fundamental limits of performance for force Reflecting teleoperation,” The International Journal of Robotics Research, 1998.
[11] M. Serna, L. G. Garcia-Valdovinos, and T. Salgado-Jimenez, “Bilateral teleoperation of a commercial small-sized underwater vehicle for academic purposes,” 2015.
[12] “The NEPTUNE SB-1 submarine,” http://www.thundertiger.com/products-detail.php?id=42
[13] “Da Vinci Surgical Robot,” http://intuitivesurgical.com/company/media/images/davinci_s_images.html
[14] K. H. Nagarsheth, and J. Schor, “The Da Vinci Robot in the field of vascular surgery,” Journal of Vascular Surgery, Feb. 2015.
[15] G. S. Gupta, S. C. Mukhopadhyay, and C. H. Messom, “Master-Slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 6, Dec. 2006.
[16] Z. Jiafan, F. Hailun, and D. Yiming, “Novel 6-DOF wearable exoskeleton arm with pneumatic force,” Chinese Journal of Mechanical, vol. 27, no. 4, 2014.
[17] E. Slawinski, V. Mut, and L. Salinas “Teleoperation of a mobile robot with time-varying delay and force feedback,” Robotica, vol. 30, pp.67-77, 2012.
[18] J. Vertut, and P. Coiffet, “Robot Technology, Teleoperation and Robotics” vol. 3a, Englewood Cliffs, NJ: Prentice-Hall, 1984.
[19] D. A. Lawrence, “Stability and transparency in bilateral teleoperation,” IEEE Trans. Rob. Autom., vol. 9, no. 5, pp.624-637, Oct. 1993.
[20] R. C. Goertz, et al., “The ANL model 3 master-slave manipulator design and use in a cave,” in Proc. 9th Conf. Hot Lab. Equip., pp.121, 1961.
[21] C. R. Flatau, “A new compact servo master-slave manipulator,” in Proc. 25th Remote Syst. Tech. Div. Conf., pp.169, 1977.
[22] Y. Yokokohji, and T. Yoshikawa, “Bilateral control of master-slave manipulators for ideal kinesthetic coupling-Formulation and experiment,” IEEE Transactions on Robotics and Automation, vol. 10, no. 5, Oct. 1994.
[23] H. Murata, and S. Katsura, “Improvement of operationality under time varying delay for bilateral teleoperation systems by differential signal based data modulation,” IEEE Journal of Industry Applications, vol. 6, no. 3, pp.245-251, Sep. 2016.
[24] I. Aliaga, A. Rubio, and E. Sanchez, “Experimental quantitative comparison of different control architectures for master-slave teleoperation,” IEEE Transactions on Control Systems Technology, vol. 12, no. 1, Jan. 2004.
[25] G. J. Raju, G. C. Verghese, and T. B. Sheridan, “Design issues in 2-port network models of bilateral remote manipulation,” IEEE, 1989, pp.1316-1321.
[26] W. Perruquetti, and J. P. Barbot, “A design framework for teleoperators with kinesthetic feedback,” IEEE Transactions on Robotics and Automation, vol. 5, no. 4, Aug. 1989.
[27] Y. Yokokohji, and T. Yoshikawa, “Bilateral control of master-slave manipulators for ideal kinesthetic coupling-Formulation and experiment,” IEEE Transactions on Robotics and Automation, vol. 10, no. 5, Oct. 1994.
[28] W. Iida, and K. Ohnishi, “Reproducibility and operationality in bilateral teleoperation,” AMC, Kawasaki, Japan, 2004.
[29] C. C. D. Wit, H. Olsson, et al., “A new model for control of systems with friction,” IEEE Transactions on Automation Control, vol. 40, no. 3, Mar. 1995.
[30] T. Tjahjowidodo, F. Al-Bender, et al., “Friction characterization and compensation in electro-mechanical systems,” Journal of Sound and Vibration, Mar. 2007.
[31] “Low-speed of heavy-load transfer robot with long telescopic boom based on Stribeck friction,”
https://www.hindawi.com/journals/mpe/2012/432129/fig4/
[32] C. Mitsantisuk, K. Ohishi, and S. Katsura, “Compensation of backlash for improving the efficiency of flexible actuator in bilateral teleoperation system,” IEEE, 2011.
[33] 郭有順, “不確定時變系統之適應控制研究”, 國立台灣科技大學機械工程學系所碩士論文, 2002.
[34] “Delayed force feedback,” SAGE Journals, vol. 8, 1966.
[35] C. Mitsantisuk, K. Ohishi, and S. Katsura, “Integral sliding mode control of bilateral teleoperation with force estimation for n-DOF nonlinear manipulators,” in Proc. of the 4th International Conference on Robotics and Mechatronics, Tehran, Iran, Oct. 26-28, 2016.
[36] C. Mitsantisuk, K. Ohishi, and S. Katsura, “A robust controller design method for a flexible manipulator with a time varying payload and parameter uncertainties,” in Proc. of IEEE International Conference on Robotics and Automation, Detroit, Michigan, May.1999.
[37] H. Santacruz-Reyes, L. G. Garcia-Valdovinos, et al., “Higher order sliding mode based impedance control for dual-user bilateral teleoperation under unknown constant time delay,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, Germany, Sept 28 – Oct 2, 1999.
[38] A. Vafaei, and M. J. Yazdanpanah, “Terminal sliding mode impedance control for bilateral teleoperation under unknown constant time delay and uncertainties,” European Control Conference, Zurich, Switzerland, July. 17-19, 2013.
[39] X. Liu, and M. Tavakoli, “Adaptive control for linearly and nonlinearly parameterized dynamic uncertainties in bilateral teleoperation systems,” IEEE International Conference on Robotics and Automation, Shanghai, China, May. 9-13, 2011.
[40] P. Malysz, and S. Sirouspour, “Nonlinear and filtered force/position mappings in bilateral teleoperation with application to enhanced stiffness discrimination,” IEEE Transactions on Robotics, vol. 25, no. 5, Oct. 2009.
[41] X. Liu, M. Tavakoli, and Q. Huang, “Nonlinear adaptive bilateral control of teleoperation systems with uncertain dynamics and kinematics,” in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, Oct. 2010.
[42] Y. C. Liu, and M. H. Khong, “Adaptive control for nonlinear teleoperators with uncertain dynamics and kinematics,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, Oct. 2015.
[43] Z. Chen, Y. J. Pan, and J. Gu, “Adaptive robust control of bilateral teleoperation systems with unmeasurable environmental force and arbitrary time delays,” IET Control Theory Appl., vol. 8, pp.1456-1464, April. 2014.
[44] E. Lucet, Y. Liu, et al., “Sliding mode and adaptive control for an underactuated process,” in Proc. of the 15th Mediterranean Conference on Control and Automation, Athens, Greece, Jul. 27-29, 2007.
[45] J. J. E. Slotine, J. A. Coetsee, et al., “Adaptive sliding control synthesis for non-linear systems,” International Journal of Control, vol. 43, no. 6, pp.1631-1651, 1986.
[46] M. Narimani, and M. Narimani, “Design of adaptive-sliding mode controller for positioning control of underwater robotics,” IEEE CCECE/CCGEI, Ottawa, May. 2006.
[47] M. Motamedi, G. Vossoughi, et al., “Robust adaptive control of a micro telemanipulation system using sliding mode-based force estimation,” American Control Conference, Marriott Waterfront, Baltimore, MD, USA, June 30 – July 2, 2010.
[48] G. Y. Gu, and L. M. Zhu, “An experimental comparison of proportional-integral, sliding mode, and robust adaptive control for piezo-actuated nanopositioning stages,” Review of Scientific Instruments, May. 2014.
[49] M. Motamedi, M. T. Ahmadian, et al., “Adaptive sliding mode control of a piezo-actuated bilateral teleoperated micromanipulation system,” Precision Engineering, vol. 35, pp.309-317, April. 2011.
[50] N. Hogan, “Impedance control: An approach to manipulation,” Journal of Dynamic Systems, Measurement, and Control, vol. 107, Mar. 1985.
[51] J. J. E. Slotine, and W. Li, “Applied nonlinear control,” Prentice Hall, 2005.
[52] J. H. Park, and H. C. Cho, “Sliding-mode controller for bilateral teleoperation with varying time delay,” in Proc. of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, Sep. 19-23, 1999.
[53] “Measuring motor parameters,”
file:///C:/Users/Sam/Downloads/motorParameters%20(1).pdf
[54] A. Robinson, “Guide to the calibration and testing of torque transducers,” Measurement Good Practice Guide No.107
[55] M. H. Wu, and W. Hsu, “Investigation of torsion springs by considering the friction and the end effect,” Journal of Mechanical Design, Dec. 1999.
[56] W. J. Kim, S. M. Yoon, and M. C. Lee, “Bilateral control for surgical robot using sliding perturbation observer,” SICE Annual Conference, Nagoya, Japan, Sep. 14-17, 2013.
[57] Z. Chen, B. Liang, et al., “Adaptive bilateral control for nonlinear uncertain teleoperation with guaranteed transient performance,” Robotica, vol. 34, pp.2205-2222, 2016.
[58] C. Ionete, D. Sendrescu, and D. Popescu, “Ethernet for networked control,” in Proc. of the Annual Conference on Science, Taipei, Taiwan, Aug. 18-21, 2010.

QR CODE