簡易檢索 / 詳目顯示

研究生: 吳旻勳
Min-Hsun Wu
論文名稱: 5G新無線實體層中多使用者波束成形之實現
Implementation of Multiple Users’ Beamforming in 5G New Radio Physical Layer
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 許騰尹
Terng-Yin Hsu
柯正浩
Kevin Cheng-Hao Ko
徐勝均
Sendren Sheng-Dong Xu
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 72
中文關鍵詞: 第五代行動通訊新無線軟體定義實體層波束成形波達方向多訊號分類演算法最小變異量無失真響應演算法
外文關鍵詞: The 5th Generation Mobile Networks (5G) New Radio (NR), Software-Defined Physical Layer, Beamforming, Direction of Arrival (DOA), Multiple Signal Classification (MUSIC) Algorithm, Minimum Variance Distortionless Response (MVDR) Algorithm
相關次數: 點閱:681下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 致謝 I 摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 方法與貢獻 2 1.4 論文架構 3 第二章 預備知識 5 2.1 第五代行動通訊新無線介紹 5 2.1.1 第五代行動通訊新無線發展 5 2.1.2 三大使用情境 6 2.2 第三代合作夥伴計畫 8 2.3 架構切分 12 2.4 無線通訊系統架構 13 2.5 開放式無線電存取網路 14 2.6 實體層介紹 15 2.7 實體層通道介紹 17 2.8 波束成形(Beamforming) 19 2.9 DOA演算法介紹 20 2.9.1 線性天線陣列 21 2.9.2 QR演算法介紹 21 2.9.3 MUSIC演算法介紹 23 2.9.4 MVDR演算法介紹 24 2.10 OpenAirInterface模擬平臺 25 2.11 幀結構 27 第三章 DOA演算法模組實作 30 3.1 問題陳述 30 3.2 DOA演算法模組實作 30 第四章 DOA演算法模組系統整合 33 4.1 問題陳述 33 4.2 Single user DOA演算法模組架構 34 4.3 Multiple users DOA演算法模組架構 36 第五章 模擬結果與討論 39 5.1 評估標準 39 5.2 實驗結果與分析 39 第六章 結論與未來展望 49 6.1 結論 49 6.2 未來展望 50 參考文獻 51

    [1] F. K. Shaikh, S. Zeadally, and E. Exposito, “Enabling technologies for green Internet of Things,” IEEE Systems Journal, vol. 11, no. 2, pp. 983-994, June 2017, DOI: 10.1109/JSYST.2015.2415194.
    [2] N. Kaur and S. K. Sood, “An energy-efficient architecture for the Internet of Things (IoT),” IEEE Systems Journal, vol. 11, no. 2, pp. 796-805, June 2017, DOI: 10.1109/JSYST.2015.2469676.
    [3] A. Aminjavaheri, A. RezazadehReyhani, R. Khalona, H. Moradi, and B. Farhang-Boroujeny, “Underlay control signaling for ultra-reliable low-latency IoT communications,” in Proc. IEEE International Conference on Communications Workshops, Kansas City, MO, USA, May 20-24, 2018, pp. 1-6,
    DOI: 10.1109/ICCW.2018.8403493.
    [4] A. A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, and A. Cedergren, “OFDM numerology design for 5G New Radio to support IoT, eMBB, and MBSFN,” IEEE Communications Standards Magazine, vol. 2, no. 2, pp. 78-83, June 2018, DOI: 10.1109/MCOMSTD.2018.1700021.
    [5] L. Wan et al., “4G\/5G spectrum sharing: efficient 5G deployment to serve enhanced mobile broadband and Internet of Things applications,” IEEE Vehicular Technology Magazine, vol. 13, no. 4, pp. 28-39, December 2018,
    DOI: 10.1109/MVT.2018.2865830.
    [6] T. Manglayev, R. C. Kizilirmak, and Y. H. Kho, “Comparison of parallel and successive interference cancellation for non-orthogonal multiple access,” in Proc. International Conference on Computing and Network Communications, Astana, Kazakhstan, August 15-17, 2018, pp. 74-77, DOI: 10.1109/CoCoNet.2018.8476815.
    [7] A. Guidotti, A. Vanelli-Coralli, M. Conti, S. Andrenacci, S. Chatzinotas, N. Maturo, B. Evans, A. Awoseyila, A. Ugolini, T. Foggi, L. Gaudio, N. Alagha, and S. Cioni, “Architectures and key technical challenges for 5G systems incorporating satellites,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2624-2639, March 2019, DOI: 10.1109/TVT.2019.2895263.
    [8] M. Mozaffari, Y.-P. E. Wang, O. Liberg, and J. Bergman, “Flexible and efficient deployment of NB-IoT and LTE-MTC in coexistence with 5G New Radio,” in Proc. IEEE Conference on Computer Communications Workshops, Paris, France, May 2-April 29, 2019, pp. 391-396, DOI: 10.1109/INFCOMW.2019.8845119.
    [9] J. Yeo, H. Ji, J. Bang, Y. Kim, and J. Lee, “A novel group retransmission scheme for industrial IoT over 5G,” in Proc. IEEE Globecom Workshops, Waikoloa, HI, USA, December 9-13, 2019, pp. 1-5, DOI: 10.1109/GCWkshps45667.2019.9024444.
    [10] N. H. Mahmood, D. Laselva, D. Palacios, M. Emara, M. C. Filippou, D. M. Kim, and I. de-la-Bandera, “Multi-channel access solutions for 5G New Radio,” in Proc. IEEE Wireless Communications and Networking Conference Workshop, Marrakech, Morocco, April 15-18, 2019, pp. 1-6, DOI: 10.1109/WCNCW.2019.8902668.
    [11] J. J. Nielsen, R. Liu, and P. Popovski, “Ultra-reliable low latency communication using interface diversity,” IEEE Transactions on Communications, vol. 66, no. 3, pp. 1322-1334, March 2018, DOI: 10.1109/TCOMM.2017.2771478.
    [12] O. L. Alcaraz López, E. M. G. Fernández, R. D. Souza, and H. Alves, “Ultra-reliable cooperative short-packet communications with wireless energy transfer,” IEEE Sensors Journal, vol. 18, no. 5, pp. 2161-2177, March 2018,
    DOI: 10.1109/JSEN.2018.2789480.
    [13] H. Malik, M. M. Alam, Y. Le Moullec, and Q. Ni, “Interference-aware radio resource allocation for 5G ultra-reliable low-latency communication,” in Proc. IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, December 9-13, 2018, pp. 1-6,
    DOI: 10.1109/GLOCOMW.2018.8644301.
    [14] W. Chen, X. Fan, and L. Chen, “A CNN-based packet classification of eMBB, mMTC and URLLC applications for 5G,” in Proc. International Conference on Intelligent Computing and its Emerging Applications, Tainan, Taiwan, August 30-September 1, 2019, pp. 140-145, DOI: 10.1109/ICEA.2019.8858305.
    [15] Y. Huang, S. Li, C. Li, Y. T. Hou, and W. Lou, “A deep-reinforcement-learning-based approach to dynamic eMBB/URLLC multiplexing in 5G NR,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6439-6456, July 2020, DOI: 10.1109/JIOT.2020.2978692.
    [16] A. K. Bachkaniwala, V. Dhanwani, S. S. Charan, D. Rawal, and S. K. Devar, “IMT-2020 evaluation of EUHT radio interface technology,” in Proc. IEEE 5G World Forum, Bangalore, India, September 10-12, 2020, pp. 631-636,
    DOI: 10.1109/5GWF49715.2020.9221023.
    [17] ITU, “IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond,” Recommendation ITU-R M.2083-0, September 2015. [Online]. Available: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf, Accessed on: May 1, 2022.
    [18] P. S. Nithin, N. B. Sai Shibu, S. Sree Lakshmi, and S. Ponnekanti, “Location module for 5G base station to support mobility management of drones,” in Proc. International Conference on Communication and Electronics Systems, Coimbatore, India, July 17-19, 2019, pp. 1336-1340, DOI: 10.1109/ICCES45898.2019.9002520.
    [19] B. Bulut, “5G NR C-V2V for high speed train safety applications,” in Proc. Signal Processing and Communications Applications Conference, Gaziantep, Turkey, October 05-07, 2020, pp. 1-4, DOI: 10.1109/SIU49456.2020.9302510.
    [20] X. Liu, D. Wang, M. Wu, and Z. Dong, “Development and application research of 5G private network equipment for ship construction,” in Proc. Asia Symposium on Signal Processing, Beijing, China, November 12-14, 2021, pp. 130-134,
    DOI: 10.1109/ASSP54407.2021.00028.
    [21] L. Chiaraviglio, W. Liu, J. A. Gutierrez, and N. Blefari-Melazzi, “Optimal pricing strategy for 5G in rural areas with unmanned aerial vehicles and large cells,” in Proc. International Telecommunication Networks and Applications Conference, Melbourne, VIC, Australia, November 22-24, 2017, pp. 1-7,
    DOI: 10.1109/ATNAC.2017.8215406.
    [22] L. Amorosi, L. Chiaraviglio, F. D'Andreagiovanni, and N. Blefari-Melazzi, “Energy-efficient mission planning of UAVs for 5G coverage in rural zones,” in Proc. IEEE International Conference on Environmental Engineering, Milan, Italy, March 12-14, 2018 pp. 1-9, DOI: 10.1109/EE1.2018.8385250.
    [23] G. Vallero and M. Meo, “Modelling solar powered UAV-BS for 5G and beyond,” in Proc. Mediterranean Communication and Computer Networking Conference, Ibiza, Spain, June 15-17, 2021, pp. 1-8,
    DOI: 10.1109/MedComNet52149.2021.9501239.
    [24] K. Khaled and L. Talbi, “Case study of radio coverage in complex indoor environments for 5G communications,” in Proc. IEEE International Conference on Wireless for Space and Extreme Environments, Ottawa, ON, Canada, October 16-18, 2019, pp. 105-110, DOI: 10.1109/WiSEE.2019.8920388.
    [25] S. Lien, D. Deng, C. Lin, H. Tsai, T. Chen, C. Guo, and S. Cheng, “3GPP NR sidelink transmissions toward 5G V2X,” IEEE Access, vol. 8, pp. 35368-35382, February 2020, DOI: 10.1109/ACCESS.2020.2973706.
    [26] M. Korde, “Synchronization aspects in 5G,” in Proc. International Conference on Communication and Signal Processing, Chennai, India, July 28-30, 2020, pp. 0474-0478, DOI: 10.1109/ICCSP48568.2020.9182120.
    [27] 3GPP, “System Architecture for the 5G System; Stage 2,” The 3rd Generation Partnership Project (3GPP).
    [28] 3GPP, “Study on New Radio (NR) Access Technology,” The 3rd Generation Partnership Project (3GPP).
    [29] 3GPP, “5G NR; Base Station (BS) Radio Transmission and Reception,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.104, April 2019, version 15.4.0.
    [30] 3GPP, “5G NR; Physical Layer; General Description,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.201, September 2018, version 15.0.0.
    [31] 3GPP, “5G NR; Services Provided by the Physical Layer,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.202, July 2018, version 15.2.0.
    [32] 3GPP, “5G NR; Physical Channels and Modulation,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, April 2019, version 15.4.0.
    [33] 3GPP, “5G NR; Multiplexing and Channel Coding,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.212, April 2019, version 15.4.0.
    [34] 3GPP, “5G NR; Physical Layer Procedures for Control,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.213, April 2019, version 15.4.0.
    [35] 3GPP, “5G NR; NR; Physical Layer Procedures for Data,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.214, April 2019, version 15.4.0.
    [36] 3GPP, “5G NR; Physical Layer Measurements,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.215, April 2019, version 15.4.0.
    [37] 3GPP, “5G NR; Radio Resource Control (RRC); Protocol Specification,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.331, April 2019, version 15.4.0.
    [38] S. Namba, T. Warabino, and S. Kaneko, “BBU-RRH switching schemes for centralized RAN,” in Proc. International Conference on Communications and Networking in China, Kun Ming, China, August 8-10, 2012, pp. 762-766,
    DOI: 10.1109/ChinaCom.2012.6417586.
    [39] M. Mohsin, J. M. Batalla, E. Pallis, G. Mastorakis, E. K. Markakis, and C. X. Mavromoustakis, “On Analyzing Beamforming Implementation in O-RAN 5G,” Electronics, vol. 10, no. 17, p. 2162, September 2021.
    DOI: 10.3390/electronics10172162.
    [40] O-RAN Alliance, “O-RAN Fronthaul Working Group Control, User and Synchronization Plane Specification,” The Open Radio Access Network(O-RAN) Alliance, Technical Specification ORAN-WG4.CUS.0, August 2019, version 2.0.
    [41] R. R. Olson, “The airborne open system interconnection data link test facility,” in Proc. IEEE/AIAA Digital Avionics Systems Conference, Seattle, WA, USA, October 5-8, 1992, pp. 509-513, DOI: 10.1109/DASC.1992.282109.
    [42] Y. Li, D. Li, W. Cui, and R. Zhang, “Research based on OSI model,” in Proc. IEEE International Conference on Communication Software and Networks, Xi’an, China, May 27-29, 2011, pp. 554-557, DOI: 10.1109/ICCSN.2011.6014631.
    [43] 3GPP, “Study on New Radio Access Technology; Physical Layer Aspects,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.802, September 2017, version 14.2.0.
    [44] 3GPP, “Study on New Radio Access Technology; Radio access architecture and interfaces,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.801, March 2017, version 14.0.0.
    [45] 3GPP, “Study on New Radio Access Technology; Radio Interface Protocol Aspects,” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.804, March 2017, version 14.0.0.
    [46] 3GPP, “Study on physical layer enhancements for NR ultra-reliable and low latency case (URLLC),” The 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.824, February 2019, version 1.0.1.
    [47] Z. Guo, W. Wang, X. Wang, and X. Zeng, “Hardware-efficient beamspace direction-of-arrival estimator for unequal-sized subarrays,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1044-1048, March 2022, DOI: 10.1109/TCSII.2021.3125407.
    [48] L. Chang, H. Yang, H. Zhang, T. A. Gulliver, S. Tan, and Y. Wang, “Large direction-of-arrival mismatch correction for adaptive beamforming,” IEEE Access, vol. 10, pp. 61201-61212, April 2022, DOI: 10.1109/ACCESS.2022.3165038.
    [49] L. Pucci, E. Paolini, and A. Giorgetti, “System-Level analysis of joint sensing and communication based on 5G New Radio,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp. 2043-2055, July 2022,
    DOI: 10.1109/JSAC.2022.3155522.
    [50] “ShareTechnote,” [Online]. Available: http://www.sharetechnote.com/, Accessed on: July 30, 2022.
    [51] J. Wang, B. Wang, S. Li, and W. Yi, “DOA estimation for mixed field of distributed arrays,” in Proc. International Conference on Control, Automation and Information Sciences, Xi'an, China, October 14-17, 2021, pp. 849-854,
    DOI: 10.1109/ICCAIS52680.2021.9624583.
    [52] X. Lian, S. Li, H. Chen, Y. Zhang, X. Cui, and B. Guo, “DOA estimation based on CNN in L-type mutual matrix,” in Proc. International Conference on Communication, Image and Signal Processing, Chengdu, China, November 19-21, 2021, pp. 1-6, DOI: 10.1109/CCISP52774.2021.9639357.
    [53] Y. Tian, S. Liu, W. Liu, H. Chen, and Z. Dong, “Vehicle positioning with deep learning-based direction-of-arrival estimation of incoherently distributed sources,” IEEE Internet of Things Journal, May 2022, DOI: 10.1109/JIOT.2022.3171820.
    [54] W. Shan, J. Wang, X. kaiJia, J. Wang and J. Guan, “Research on uniform linear array output signal and beamforming,” in Proc. IEEE International Conference on Signal Processing, Communications and Computing, August 21-24, 2020, pp. 1-4, DOI: 10.1109/ICSPCC50002.2020.9259510.
    [55] J. Qu, Y. Cui, X. Wang, and A. Yang, “Computer simulation of QR algorithm and its application in the matrix eigenvalue problem,” in Proc. International Conference on Test and Measurement, Hong Kong, China, December 05-06, 2009, pp. 338-341, DOI: 10.1109/ICTM.2009.5412924.
    [56] V. Molodtsov, A. Kureev, and E. Khorov, “Experimental study of smoothing modifications of the MUSIC algorithm for direction of arrival estimation in indoor environments,” IEEE Access, vol. 9, pp. 153767-153774, November 2021, DOI: 10.1109/ACCESS.2021.3127861.
    [57] Y. Liu, Y. Yan, L. You, W. Wang, and H. Duan, “Spatial covariance matrix reconstruction for DOA estimation in hybrid massive MIMO systems with multiple radio frequency chains,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 12185-12190, November 2021, DOI: 10.1109/TVT.2021.3113018.
    [58] B. Li, S. Wang, J. Zhang, X. Cao and C. Zhao, “Ultra-fast accurate AoA estimation via automotive massive-MIMO radar,” IEEE Transactions on Vehicular Technology, vol. 71, no. 2, pp. 1172-1186, February 2022, DOI: 10.1109/TVT.2021.3135910.
    [59] W. Zhao, J. -K. Zhang, X. -P. Zhang, and R. Zheng, “Multiple-target localization by millimeter-wave radars with trapezoid virtual antenna arrays,” IEEE Internet of Things Journal, April 2022, DOI: 10.1109/JIOT.2022.3167916.
    [60] O. Khaldoon, A. J. Aljaaf, and M. Alloghani, “A novel self-calibration technique for linear array based on modified MVDR adaptive Beamformer,” in Proc. International Conference on Developments in eSystems Engineering, Kazan, Russia, October 7-10, 2019, pp. 345-350, DOI: 10.1109/DeSE.2019.00070.
    [61] S. Enahoro, S. C. Ekpo, M. C. Uko, A. Altaf, U.-E.-H. Ansari, and M. Zafar, “Adaptive beamforming for mmWave 5G MIMO antennas,” in Proc. IEEE Annual Wireless and Microwave Technology Conference, Sand Key, FL, USA, April 28-29, 2021, pp. 1-5, DOI: 10.1109/ACCESS.2021.3112514.
    [62] Y. Shao, G. Zheng, F. Liu, and F. Jiang, “A coherent weak target DOA estimation method based on target features,” in Proc. OES China Ocean Acoustics, Harbin, China, July 14-17, 2021, pp. 5-8, DOI: 10.1109/COA50123.2021.9519912.
    [63] M. Singh and M. Wajid, “Comparative analysis of conventional and adaptive Beamforming for linear array,” in Proc. International Conference on Signal Processing, Computing and Control, Solan, India, October 7-9, 2021, pp. 576-580, DOI: 10.1109/ISPCC53510.2021.9609436.
    [64] R. Zitouni and L. George, “Output power analysis of a software defined radio device,” in Proc. IEEE Radio and Antenna Days of the Indian Ocean, Reunion, France, October 10-13, 2016, pp. 1-2, DOI: 10.1109/RADIO.2016.7771996.
    [65] A. Ibanez, J. Sanchez, D. Gomez–Barquero, J. Mika, S. Babel, and K. Kuehnhammer, “5G broadcast SDR open source platforms,” in Proc. IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Bilbao, Spain, June 15-17, 2022, pp. 01-06, DOI: 10.1109/BMSB55706.2022.9828570.
    [66] R. Wang, Y. Peng, H. Qu, W. Li, H. Zhao, and B. Wu, “OpenAirInterface-an effective emulation platform for LTE and LTE-Advanced,” in Proc. International Conference on Ubiquitous and Future Networks, Shanghai, China, July 8-11, 2014, pp. 127-132,
    DOI: 10.1109/ICUFN.2014.6876765.
    [67] A. Virdis, N. Iardella, G. Stea, and D. Sabella, “Performance analysis of OpenAirInterface system emulation,” in Proc. International Conference on Future Internet of Things and Cloud, Rome, Italy, August 24-26, 2015, pp. 662-669,
    DOI: 10.1109/FiCloud.2015.77.
    [68] S. S. Nakkina, S. Balijepalli, and C. R. Murthy, “Performance benchmarking of the 5G NR PHY on the OAI codebase and USRP hardware,” in Proc. International ITG Workshop on Smart Antennas, French Riviera, France, November 10-12, 2021, pp. 1-6.
    [69] V. G. Drozdova and A. A. Kalachikov, “SDR based evaluation of the initial cell search in 5G NR OpenAirInterface implementation,” in Proc. XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering, Novosibirsk, Russian Federation, November 19-21, 2021, pp. 248-251,
    DOI: 10.1109/APEIE52976.2021.9647493.
    [70] “Home·Wiki·oai/openairinterface5G·Gitlab,” [Online]. Available: https://gitlab.eurecom.fr/oai/openairinterface5g/wikis/home, Accessed on: May 1, 2022.

    無法下載圖示 全文公開日期 2026/02/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE