簡易檢索 / 詳目顯示

研究生: 謝孟樺
Meng-Hua Xie
論文名稱: 改善毫米波網路中多使用者於擴增實境與虛擬實境遊戲的波束訓練性能
Improving Beam Training Performance for Multi-User AR/VR Gaming in Millimeter-Wave Networks
指導教授: 黃琴雅
Chin-Ya Huang
口試委員: 曾柏軒
Po-Hsuan Tseng
古孟霖
Meng-Lin Ku
任芳慶
Fang-Ching Ren
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 72
中文關鍵詞: 毫米波波束訓練波束成形多使用者擴增實境虛擬實境
外文關鍵詞: mmWave, Beam training, Beamforming, Multi-User, AR, VR
相關次數: 點閱:347下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文場景建立於毫米波網路中並基於有著高吞吐量及低延遲標準的AR/VR 應用下,採用當前網路中較常使用的傳輸層控制協定(Transmission Control Protocol, TCP),將有多位使用者同時以每秒數百萬位元的吞吐量進行資料傳輸。在此場景下,位處高頻段的毫米波訊號面臨著高路徑損耗的物理特性。因此人們透過波束成形技術使得毫米波訊號具有高度定向性以緩解路徑損耗的影響。也因如此,波束成形所產生的定向窄波需要不斷地追蹤與同步訊號,且當前波束訓練將會採用窮舉法對每個波束進行同步,以此找到最佳的波束組合。然而,我們發現於現有的IEEE 802.11ay 的信標間隔(Beacon Interval) 架構下,波束訓練將會減少可用於進行資料傳輸的持續時間,並造成封包在傳輸上增加數十至數百毫秒的額外延遲,在應用延遲標準低於波束訓練持續時間的狀況下,將可能造成使用者應用中斷等情形。此外,在多位使用者同時與同一台毫米波無線接取點連接時,我們發現在毫米波無線接取點進入波束訓練狀態下,將會減少信標間隔中用於資料傳輸的時段,造成訊號雜訊比(Signal-to-Noise Ratio, SNR) 較佳或不須進行波束訓練的使用者其資料傳輸連帶受到影響。為了改善上述波束訓練所帶來的影響,我們提出了一種基於封包複製的波束訓練性能傳輸優化方案(Transmission Optimization scheme based on Packet duplication for Beam training performance, TOPBeam) 。所提出的TOPBeam 由三種機制所組合,分別為毫米波雙連線機制、封包複製機制與緩衝區管理機制。首先,使用者透過毫米波雙連線機制同時與兩台毫米波無線接取點進行連接。如此一來,即使一台毫米波無線接取點進入波束訓練狀態,也能透過毫米波雙連線機制中的另一台毫米波無線接取點維持資料傳輸,從而避免所有使用者的應用因為波束訓練而中斷。接著,透過網路閘道器執行封包複製機制,透過複製原始封包的方式生成冗餘封包,並交由毫米波雙連線機制透過兩台毫米波無線接取點將封包等比例地送至使用者端,並結合毫米波雙連線機制,如此便能確保使用者透過一台毫米波無線接取點也能滿足應用需求。另外,毫米波無線接取點進行波束訓練時,將造成封包堆積在緩衝區中,待波束訓練完成後再傳輸緩衝區內的封包也可能因為超過應用延遲標準而被丟棄並影響到後續有效封包的傳輸,因此我們進一步透過緩衝區管理機制動態的剔除對於應用已經過時的封包。為了評估TOPBeam 的性能,我們將TOPBeam 實現在網路模擬器3 (Network Simulator 3, ns-3) 上,並採用IEEE 802.11ay 模組來進行模擬及實驗。實驗結果表明,TOPBeam 在波束訓練狀態下能顯著的提高AR/VR 應用的端到端吞吐量以及低延遲的傳輸表現。


    In this thesis, we consider multiple downlink transmission control protocol (TCP) flows are transmitted in the millimeter wave (mmWave) networks for high throughput and low latency applications such as augmented reality (AR) and virtual reality (VR) applications. In this scenario, mmWave signals in the high frequency band suffer the issues of high path loss and are blockage sensitive. Beamforming is a technology that can reduce the effects of path loss by making mmWave beams, and the narrow beams are needed to be tracked and synchronized continuously. During beam training, the exhaustive search is used to find the best beam configuration, and thus the latency of beam training will last for tens to hundreds of milliseconds. If the latency requirement of the application is lower than the required time for beam training, users may encounter interruptions in their applications. In addition, we find that when the mmWave wireless access point connects with multiple users, during beam training, the Data Transmission Interval (DTI) will be reduced, which also affects the data transmission for users with better Signal-to-Noise Ratio (SNR) or those who do not need to perform beam training. To solve the problem caused by beam training, we propose a Transmission Optimization scheme based on Packet duplication for Beam training performance (TOPBeam). The proposed TOPBeam consists of mmWave dual-connectivity strategy, packet duplication strategy, and buffer management strategy. First, the users connect to two mmWave wireless access points through the mmWave dual-connectivity strategy. Then, the packet duplication strategy duplicates packets in the gateway and delivers them equally through the dual mmWave links obtained by the mmWave dual-connectivity strategy. With these two strategies, even if a mmWave wireless access point performs beam training, the data transmission can be maintained through the other mmWave wireless access point. Moreover, if a mmWave wireless access point performs beam training, causing head of line blocking, the packets missed the delay requirement (i.e., expired packets) are dynamically dropped through the buffer management strategy. This prevents transmitting the expired packets. To evaluate the performance of TOPBeam, we implement TOPBeam on Network Simulator 3 (ns-3) and used
    the IEEE 802.11ay module for simulation and experimentation. The evaluation shows
    that TOPBeam can significantly improve transmission performance regarding end-to-end throughput and latency during beam training.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX 1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 文獻探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 系統模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1 系統架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.1 接收端靈敏度. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.2 損失模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3 有效流量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.4 信標間隔. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 問題描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.1 毫米波雙連線機制. . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1.2 封包複製機制. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1.3 緩衝區管理機制. . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 TOPBeam 方法描述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.1 TOPBeam 於網路閘道器的執行流程. . . . . . . . . . . . . . . . 17 4.2.2 TOPBeam 於毫米波無線接取點的執行流程. . . . . . . . . . . . 17 4.2.3 TOPBeam 於使用者的執行流程. . . . . . . . . . . . . . . . . . 19 5 實作設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1 TOPBeam 於ns-3 上的實作. . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.1 TOPBeam 於網路閘道器的實作. . . . . . . . . . . . . . . . . . 23 5.1.2 TOPBeam 於毫米波無線接取點的實作. . . . . . . . . . . . . . . 23 5.1.3 TOPBeam 於使用者的實作. . . . . . . . . . . . . . . . . . . . . 26 6 實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.1 概述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2 探討波束訓練對性能的影響. . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.1 實驗設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2.2 性能分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.3 探討頻繁的波束訓練對性能的影響. . . . . . . . . . . . . . . . . . . . . 37 6.3.1 實驗設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.3.2 性能分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.4 探討不同緩衝區管理機制參數對於性能的影響. . . . . . . . . . . . . . . 44 6.4.1 實驗設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.4.2 性能分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.5 探討同時服務不同應用下的影響. . . . . . . . . . . . . . . . . . . . . . 48 6.5.1 實驗設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.5.2 性能分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.1 後續工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 授權書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    [1] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward Low-Latency and Ultra-Reliable Virtual Reality,” IEEE Network, vol. 32, no. 2, pp. 78–84, Apr. 2018.
    [2] J.-P. Stauffert, F. Niebling, and M. E. Latoschik, “Effects of Latency Jitter on Simulator Sickness in a Search Task,” in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Mar. 2018, pp. 121–127.
    [3] R. J. Teather, A. Pavlovych, W. Stuerzlinger, and I. S. MacKenzie, “Effects of Tracking Technology, Latency, and Spatial Jitter on Object Movement,” in 2009 IEEE Symposium on 3D User Interfaces, Mar. 2009, pp. 43–50.
    [4] Y. Ghasempour, C. R. C. M. da Silva, C. Cordeiro, and E. W. Knightly, “IEEE
    802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi,” IEEE
    Communications Magazine, vol. 55, no. 12, pp. 186–192, Oct. 2017.
    [5] S. Sur, X. Zhang, P. Ramanathan, and R. Chandra, “BeamSpy: Enabling Robust 60 GHz Links Under Blockage,” in 13th USENIX Symposium on Networked Systems
    Design and Implementation (NSDI 16), Mar. 2016, pp. 193–206.
    [6] S. Jog, J. Wang, H. Hassanieh, and R. R. Choudhury, “Enabling Dense Spatial Reuse in mmWave Networks,” in Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos, Aug. 2018, pp. 18–20.
    [7] A. Bodi, J. Zhang, J. Wang, and C. Gentile, “Physical-Layer Analysis of IEEE
    802.11ay Based on a Fading Channel Model from Mobile Measurements,” in ICC
    2019 - 2019 IEEE International Conference on Communications (ICC), May 2019, pp. 1–7.
    [8] T. Nitsche et al., “IEEE 802.11ad: Directional 60 GHz Communication for multi-
    Gigabit-per-second Wi-Fi,” IEEE Communications Magazine, pp. 132–141, Dec.
    2014.
    [9] H. Shokri-Ghadikolaei, L. Gkatzikis, and C. Fischione, “Beam-Searching and Transmission Scheduling in Millimeter Wave communications,” in 2015 IEEE International Conference on Communications (ICC), Sep. 2015, pp. 1292–1297.
    [10] Y. Feng, D. He, Y. Guan, Y. Huang, Y. Xu, and Z. Chen, “Beamwidth Optimization for Millimeter-Wave V2V Communication Between Neighbor Vehicles in Highway Scenarios,” IEEE Access, vol. 9, pp. 4335–4350, Dec. 2021.
    [11] G. Charan, T. Osman, A. Hredzak, N. Thawdar, and A. Alkhateeb, “Vision-Position Multi-Modal Beam Prediction Using Real Millimeter Wave Datasets,” in 2022 IEEE Wireless Communications and Networking Conference (WCNC), May 2022, pp. 2727–2731.
    [12] P. Wang, J. Fang, W. Zhang, and H. Li, “Fast Beam Training and Alignment for
    IRS-Assisted Millimeter Wave/Terahertz Systems,” IEEE Transactions on Wireless Communications, vol. 21, no. 4, pp. 2710–2724, Apr. 2022.
    [13] X. An, C.-S. Sum, R. V. Prasad, J. Wang, Z. Lan, J. Wang, R. Hekmat, H. Harada, and I. Niemegeers, “Beam Switching Support to Resolve Link-Blockage Problem in 60 GHz WPANs,” in 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 2009, pp. 390–394.
    [14] T. Nitsche, A. B. Flores, E. W. Knightly, and J. Widmer, “Steering with Eyes Closed: mmWave Beam Steering without In-Band Measurement,” in 2015 IEEE Conference on Computer Communications (INFOCOM), Aug. 2015, pp. 2416–2424.
    [15] P. Zhou et al., “IEEE 802.11ay-Based mmWave WLANs: Design Challenges and Solutions,” IEEE Communications Surveys Tutorials, vol. 20, no. 3, pp. 1654–1681, Mar. 2018.
    [16] S. Sur, V. Venkateswaran, X. Zhang, and P. Ramanathan, “60 GHz Indoor Networking through Flexible Beams: A Link-Level Profiling,” in SIGMETRICS 2015, Jun. 2015.
    [17] L.-H. Shen, T.-W. Chang, K.-T. Feng, and P.-T. Huang, “Design and Implementation for Deep Learning Based Adjustable Beamforming Training for Millimeter Wave Communication Systems,” IEEE Transactions on Vehicular Technology, vol. 70, no. 3, pp. 2413–2427, Feb. 2021.
    [18] L.-H. Shen, K.-T. Feng, and L. Hanzo, “Coordinated Multiple Access Point Multiuser Beamforming Training Protocol for Millimeter Wave WLANs,” IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 13 875–13 889, Oct. 2020.
    [19] K. Hosoya et al., “Multiple Sector ID Capture (MIDC): A Novel Beamforming Technique for 60-GHz Band Multi-Gbps WLAN/PAN Systems,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 1, pp. 81–96, Oct. 2015.
    [20] S. K. Saha, S. Aggarwal, R. Pathak, D. Koutsonikolas, and J. Widmer, “MuSher: An agile Multipath-TCP Scheduler for Dual-Band 802.11ad/ac Wireless LANs,” in The 25th Annual International Conference on Mobile Computing and Networking, Aug. 2019, pp. 1–16.
    [21] E. M. Mohamed, K. Sakaguchi, and S. Sampei, “Wi-Fi Coordinated WiGig Concurrent Transmissions in Random Access Scenarios,” IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 10 357–10 371, Aug. 2017.
    [22] K. Chandra, R. V. Prasad, B. Quang, and I. G. M. M. Niemegeers, “CogCell: Cognitive Interplay between 60 GHz Picocells and 2.4/5 GHz Hotspots in the 5G Era,” IEEE Communications Magazine, vol. 53, no. 7, pp. 118–125, Jul. 2015.
    [23] M.-T. Suer, C. Thein, H. Tchouankem, and L. Wolf, “Evaluation of Multi-
    Connectivity Schemes for URLLC Traffic over WiFi and LTE,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC), May 2020, pp. 1–7.
    [24] J. Rao and S. Vrzic, “Packet Duplication for URLLC in 5G Dual Connectivity Architecture,” in 2018 IEEE Wireless Communications and Networking Conference (WCNC), Apr. 2018, pp. 1–6.
    [25] B. R. Segura D, Khatib EJ, “Dynamic Packet Duplication for Industrial URLLC,” in Sensors (Basel, Switzerland), Jan. 2022.
    [26] T. Zhu, C. Li, Y. Tang, and Z. Luo, “On Latency Reductions in Vehicle-to-Vehicle Networks by Random Linear Network Coding,” China Communications, vol. 18, no. 6, pp. 24–38, Jun. 2021.
    [27] S. Katti et al., “XORs in the Air: Practical Wireless Network Coding,” in IEEE/ACM Transactions on Networking, Jun. 2008, pp. 497–510.
    [28] R. Torre et al., “A Random Linear Network Coded HARQ Solution for Lossy and High-Jitter Wireless Networks,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Dec. 2020, pp. 1–6.
    [29] M. Drago, T. Azzino, M. Polese, C. Stefanović, and M. Zorzi, “Reliable Video
    Streaming over mmWave with Multi Connectivity and Network Coding,” in Proc.
    Int. Conf. Comput. Netw. Com mun. (ICNC), Mar. 2018, p. 508–512.
    [30] Z.Wu, C.-Y. Huang, and P. Ramanathan, “COded Taking And Giving (COTAG):
    Enhancing Transport Layer Performance over Indoor Millimeter Wave Access Networks,” in IEEE International Conference on Communications, Nov. 2021, pp. 1–16.
    [31] Z. Menglei et al., “Will TCP Work in mmWave 5G Cellular Networks?” IEEE Communications Magazine, vol. 57, no. 1, pp. 65–71, Jan. 2019.
    [32] M. Polese, R. Jana, and M. Zorzi, “TCP and MP-TCP in 5G mmWave Networks,” IEEE Internet Computing, vol. 21, no. 5, pp. 12–19, Sep. 2017.
    [33] T. Azzino, M. Drago, M. Polese, A. Zanella, and M. Zorzi, “X-TCP: a cross layer approach for TCP uplink flows in mmWave Networks,” in 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Aug. 2017, pp. 1–6.
    [34] H. Assasa, N. Grosheva, T. Ropitault, S. Blandino, N. Golmie, and J. Widmer, “Implementation and Evaluation of a WLAN IEEE 802.11ay Model in Network Simulator ns-3,” Association for Computing Machinery, pp. 9–16, Jun. 2021.
    [35] S. S. Nandagopalan, D. Dash, H. E. Madi, and G. Gopalakrishnan, “WiGig and IEEE 802.11ad - For Multi-Gigabyte-Per-Second WPAN and WLAN,” ArXiv, Nov. 2012.
    [36] “IEEE Standard for Information technology–Telecommunications and information exchange between systems–Local and metropolitan area networks–Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band,” IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012), pp.1–628, Dec. 2012.
    [37] B. Coll-Perales, M. Gruteser, and J. Gozalvez, “Evaluation of IEEE 802.11ad for
    mmWave V2V communications,” in 2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), May 2018, pp. 290–295.
    [38] B. Charyyev, E. Arslan, and M. H. Gunes, “Latency Comparison of Cloud Datacenters and Edge Servers,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Dec. 2020, pp. 1–6.
    [39] S. Gupta, Z. Sun, P. Wang, and A. Bhuyan, “Practical Framework for Beam Featurebased Physical Layer Identification in 802.11 ad/ay Networks,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC), Jun. 2020, pp. 1–6.
    [40] A. Aijaz, “Packet Duplication in Dual Connectivity Enabled 5G Wireless Networks: Overview and Challenges,” IEEE Communications Standards Magazine, vol. 3, no. 3, pp. 20–28, Sep. 2019.

    無法下載圖示 全文公開日期 2027/08/18 (校內網路)
    全文公開日期 2027/08/18 (校外網路)
    全文公開日期 2027/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE