簡易檢索 / 詳目顯示

研究生: 吳嘉彥
Jua-Yan Wu
論文名稱: 電力系統之電力硬體迴路模擬
Power Hardware in The Loop Simulation of Power System
指導教授: 連國龍
Kuo Lung Lian
口試委員: 吳啟瑞
Chi-Jui Wu
黃維澤
Wei-Tzer Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 47
中文關鍵詞: 功率硬體迴路模擬理想變壓器模型即時模擬
外文關鍵詞: Power Hardware In the Loop, Ideal Transformer Model, Real Time simulation
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功率硬體迴路(PHIL)模擬是一種即時模擬,允許實際的功率設備與模擬的電力系統交互作用。隨著基於可再生能源的發電裝置連接到主電網的需求不斷增加,使功率硬體迴路模擬獲得高度的關注,因為可模擬再生能源系統與電力系統之間的交互作用。因此可以透過功率硬體迴路模擬預測可再生能源的發電裝置對電網的影響。
    在本論文中,我們建置了適用於測試電力待測物與電力系統之功率硬體迴路架構平台。
    此功率硬體路的結果與離線模擬的結果相比,皆吻合,證明了所提出方法的有效性。


    Power hardware in the loop simulation (PHIL) is a real-time simulation allowing
    a real power device to interact with a simulated power system. With ever increasing
    demand of interfacing renewable energy based generators (REBG) to the main grid,
    PHIL simulation has gained high attention as a realistic simulation on the interaction
    between REBG and the grid can be achieved. Hence, the impact of REBGs on the
    grid can be accurately predicted via PHIL.
    In the thesis, a PHIL test platform is set up for studying how a power under
    test can impact a power system.
    As will be show in the thesis, the PHIL results are in close agreement with
    those of offline simulation, justifying the proposed platform.

    List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background & Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Type of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 PHIL CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Voltage Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Current Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Control for Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Phase-Locked-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4 PHIL Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 PHIL Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Experiment Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Peripheral Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.1 Sensor Board . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.2 Protection Board . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3.3 Level Shift Board . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4 The relationship between the three boards . . . . . . . . . . . . . . . 29 vi 4.5 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5 CONCLUSION & FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 34 5.1 Conclution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    [1] R. Ministry of Economic Affairs, “Regulations for the management of setting up
    renewable energy power generation equipment of power users above a certain
    contract capacity.”
    [2] R. Stanev, K. Viglov, K. Nakov, and T. Asenov, “A real time power hardware
    in the loop test bed for power system stability studies,” in 2020 12th Electrical
    Engineering Faculty Conference (BulEF), 2020, pp. 1–5.
    [3] L. Wang, Y. Shi, D. Soto, J. Langston, M. Bosworth, J. Hauer, and M. Steurer,
    “A reconfigurable megawatt-scale power hardware-in-the-loop simulation system for virtual motors,” in 2021 IEEE Electric Ship Technologies Symposium
    (ESTS), 2021, pp. 1–5.
    [4] G. De Carne, G. Buticchi, and M. Liserre, “Current-type power hardware in the
    loop (phil) evaluation for smart transformer application,” in 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems
    (IESES), 2018, pp. 529–533.
    [5] S. Wang, Z. Xu, B. Li, and D. Xu, “Stability evaluation of power hardwarein-the-loop simulation for dc system,” in 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), 2018, pp. 1–5.
    [6] W. Ren, M. Steurer, and T. L. Baldwin, “Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface
    algorithms,” IEEE Transactions on Industry Applications, vol. 44, no. 4, pp.
    1286–1294, 2008.
    [7] Z. Zhang, L. Fickert, and Y. Zhang, “Power hardware-in-the-loop test for cyber
    physical renewable energy infeed: Retroactive effects and an optimized power
    hardware-in-the-loop interface algorithm,” in 2016 17th International Scientific
    Conference on Electric Power Engineering (EPE), 2016, pp. 1–6.
    [8] W. Ren, M. Steurer, and S. Woodruff, “Applying controller and power
    hardware-in-the-loop simulation in designing and prototyping apparatuses for
    35
    future all electric ship,” in 2007 IEEE Electric Ship Technologies Symposium,
    2007, pp. 443–448.
    [9] X. Wu, S. Lentijo, A. Deshmuk, A. Monti, and F. Ponci, “Design and implementation of a power-hardware-in-the-loop interface: a nonlinear load case
    study,” in Twentieth Annual IEEE Applied Power Electronics Conference and
    Exposition, 2005. APEC 2005., vol. 2, 2005, pp. 1332–1338 Vol. 2.
    [10] M. Dargahi, A. Ghosh, G. Ledwich, and F. Zare, “Studies in power hardware in
    the loop (phil) simulation using real-time digital simulator (rtds),” in 2012 IEEE
    International Conference on Power Electronics, Drives and Energy Systems
    (PEDES), 2012, pp. 1–6.
    [11] K. Jha and S. Mishra, “Boost-based power amplifier for power-hardware-in-theloop simulations,” in 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2014, pp. 1–6.
    [12] S.-K. Chung, “A phase tracking system for three phase utility interface inverters,” IEEE Transactions on Power Electronics, vol. 15, no. 3, pp. 431–438,
    2000.

    無法下載圖示 全文公開日期 2032/08/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE