簡易檢索 / 詳目顯示

研究生: 周偉翔
WEI-XEING CHOU
論文名稱: 感應馬達及機械負載功率模擬器研發
Development of Power Hardware-in-The-Loop for Induction Motors and Mechanical Loads
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 林法正
Faa-Jeng Lin
劉傳聖
Chuan-Sheng Liu
林長華
Chang-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 125
中文關鍵詞: 感應馬達機械負載信號硬體模擬器功率硬體模擬器
外文關鍵詞: Induction Motors, mechanical load, signal hardware-in-the-loop, power hardware-in-the-loop
相關次數: 點閱:170下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在開發三相感應馬達及機械負載之功率硬體模擬器,以便提供不同參數的感應馬達及運轉情境,作為馬達驅動系統的測試,解決馬達及機械負載傳統量測平台,變更馬達參數不易的問題。在信號硬體模擬器的硬體設備採用國家儀器公司的PXI系統及FPGA卡,並將載入Simulink所建立的三相感應馬達及機械負載模式的模擬程式,以供馬達驅動器的控制程式驗證。結合信號硬體模擬器及可變電壓及頻率的功率轉換器,以完成感應馬達及負載的功率硬體模擬器。本系統具有機械轉矩及轉速設定,及馬達在電動機模及發電機模式操作,以供待測感應馬達驅動器測試使用。在角位置及轉速的偵測方面,完成編碼器信號硬體模擬器,提供待測馬達驅動器的轉速及角位置回授使用。本文的功率硬體模擬器含有信號硬體模擬器、電壓及電流回授電路及三相支路電感耦合換流器。三相換流器採用電流閉迴路控制及信號硬體模擬器的電壓補償,以控制三相源換流器的交錯式脈波寬度調變控制,以電流響應快速。
    本文的功率硬體模擬器實體,系統配合待測馬達驅動的轉速及電流閉迴路控制策略,以完成系統的實測。在傳統動力平台方面,馬達的轉速為1800rpm及負載轉矩為5N-m為條件,馬達操作於電動機模式時,穩態實測的a相電流峰值約為12.37 A,電流總諧波失真率為4.07%;在功率硬體模擬器實測,馬達操作於電動機模式時,穩態實測的a相電流峰值約為12.12 A,電流總諧波失真率為7.23%;Simulink的模擬穩態相電流峰值約為12.44 A,電流總諧波失真率為3.01%,其實測與模擬的電流誤差約為0.32A。在功率硬體模擬器實測發電機模式時,穩態感應馬達a相電流峰值約為12.06A,電流總諧波失真率為7.54%,對應於Simulink的模擬穩態相電流峰值約為12.36A,電流總諧波失真率為2.85%,實測與模擬的電流誤差約為2.5%。本文實測與模擬相接近,驗證本文系統可行性。


    This thesis aims to development of power hardware in the loop (PHIL) for three-phase induction motor (IM) and mechanical load. In order to provide induction motors with different parameters and operating conditions, as a test of the motor drive system, to solve the traditional measurement platform for motors and mechanical loads, and it is not easy to change motor parameters. The singal hardware in the loop (SHIL) adopted PXI system of National Instruments and FPGA interface card, and IM model created by Simulink is loaded to FPGA adapter to complete the system. Combined with SHIL and power converter with variable voltage and frequency, PHIL of induction motor and load is completed. The system has mechanical torque and speed setting, and the motor operates in motor mode and generator mode for the test of device under test (DUT) to be tested. In terms of angular position and rotational speed detection, the encoder signal hardware in the loop is completed to provide feedback of rotational speed and angular position of the DUT to be measured. Three-Phase Inverter with four-branch coupled inductor adopts current closed-loop control and voltage compensation of PHIL to control the interleaved pulse width modulation control of three-phase inverter, which has fast current response.
    The experiment of the PHIL with DUT in speed and current closed-loop control . In the traditional power platform, the motor speed is 1800rpm and the load torque is 5N-m. When the motor is operated in the motor mode, the steady-state measured phase-a current peak is about 12.37 A, and the current total harmonic distortion rate is 4.07. %; In the the PHIL, when the motor is operating in the motor mode, the measured steady-state a-phase current peak is about 12.12 A, and the current total harmonic distortion rate is 7.23%; Simulink's simulated steady-state phase current peak is about 12.44 A, the current total harmonic distortion rate is 3.01%, the current error between actual measurement and simulation is about 0.32A. In the actual generator mode of the PHIL, the peak value of the steady-state induction motor a-phase current is about 12.06A, and the current total harmonic distortion rate is 7.54%, which corresponds to the simulated steady-state phase current peak value of Simulink about 12.36A. The current total harmonic distortion rate is 2.85%, and the current error between actual measurement and simulation is about 2.5%. The closed results between experiment and simulation verify the feasibility of the system.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VIII 符號索引 XV 第一章 緒論 16 1-1  研究動機與目的 16 1-2  文獻探討 17 1-2-1 動力計測試平台 17 1-2-2 信號硬體模擬器 18 1-2-3 功率硬體模擬器 18 1-3  系統架構及本文特色 20 1-3-1 馬達驅動器之馬達及機械負載傳統測試平台 20 1-3-2 本文的功率硬體模擬器 21 1-3-3 功率硬體模擬器之功率潮流 22 1-3-4 功率硬體模擬器的系統架構 23 1-3-5 本文特色 24 1-4  本文大綱 25 第二章 三相感應馬達及機械負載的模式 26 2-1  前言 26 2-2  三相感應馬達及機械負載的連續的s域模式 26 2-3  三相感應馬達及機械負載在連續域模式 31 2-4  三相感應馬達及機械負載模擬的離散化模式及規劃 36 2-5  結語 40 第三章 三相感應馬達及機械負載的硬體模擬器規劃 41 3-1 前言 41 3-2 信號硬體模擬器的架構 41 3-3 信號硬體模擬器的軟體規劃 43 3-4 編碼器的信號硬體模擬器規劃及實測 45 3-5 功率硬體模擬器的架構及控制策略 47 A. 功率硬體模擬器的架構 47 B. 功率硬體模擬器的模式 50 C. 功率硬體模擬器的電流控制策略 52 3-6  結語 54 第四章 實體製作及實測 55 4-1  前言 55 4-2  信號硬體模擬器的實體製作 55 4-3  三相感應馬達及負載的信號硬體模擬器的實測 65 4-4  功率硬體模擬器的實體製作 76 4-5  功率硬體模擬器在Simulink的模擬 86 4-6 功率硬體模擬器實測 100 4-7  信號硬體模擬器及功率硬體模擬器的實測性能比較 106 4-8  結語 107 第五章 結論與建議 108 5-1  結論 108 5-2  建議 109 參考文獻 110 附錄A 待測三相感應馬達的參數 117 附錄B 待測馬達驅動器的轉速/電流閉迴路控制策略 118 附錄C 三相感應馬達驅動器製作及實測 119

    [1] A. H. Kadam, R. Menon, and S. S. Williamson, "Traction inverter performance testing using mathematical and real-time controller-in-the-loop permanent magnet synchronous motor emulator," IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 6651-6656, IEEE, 2016.
    [2]C. Dufour, S. Abourida, J. Bélanger, and V. Lapointe, "Real-time simulation of permanent magnet motor drive on FPGA chip for high-bandwidth controller tests and validation," IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, pp. 4581-4586, 2006.
    [3]A. Monti, E. Santi, R. A. Dougal, and M. Riva, "Rapid prototyping of digital controls for power electronics," IEEE Transactions on power electronics, vol. 18, No. 3, pp. 915-923, 2003.
    [4]P. Terwiesch, T. Keller, and E. Scheiben, "Rail vehicle control system integration testing using digital hardware-in-the-loop simulation," IEEE transactions on control systems technology, vol. 7, No. 3, pp. 352-362, 1999.
    [5]C. Dufour and J. Bélanger, "A PC-based real-time parallel simulator of electric systems and drives," Parallel Computing in Electrical Engineering, International Conference on, 2004, pp. 105-113: IEEE, 2004.
    [6]A. Monti, S. D'arco, and A. Deshmukh, "A new architecture for low cost power hardware in the loop testing of power electronics equipments," 2008 IEEE International Symposium on Industrial Electronics, pp. 2183-2188, 2008.
    [7]M. Matar and R. Iravani, "Massively parallel implementation of AC machine models for FPGA-based real-time simulation of electromagnetic transients," IEEE transactions on power delivery, vol. 26, no. 2, pp. 830-840, 2010.
    [8]L. Herrera and J. Wang, "FPGA-based detailed real-time simulation of power converters and electric machines for EV HIL applications," 2013 IEEE energy conversion congress and exposition, vol. 51, no. 2, pp. 1702-1712, 2014.
    [9]A. Bouscayrol, "Different types of hardware-in-the-loop simulation for electric drives," 2008 IEEE International Symposium on Industrial Electronics, pp. 2146-2151, 2008.
    [10]S. Lentijo, S. D'Arco, and A. J. I. T. o. I. E. Monti, "Comparing the dynamic performances of power hardware-in-the-loop interfaces," IEEE transactions on industrial electronics, vol. 57, no. 4, pp. 1195-1207, 2009.
    [11]陳冠宇,“具雙向功率轉換之單相市電併網型永磁式同步電機驅動器研製”,國立臺灣科技大學電機工程學系碩士論文,民國一百零八年。
    [12]李建霖,“具能量回收之動力計用的雙向三相感應電機驅動器研製”,國立臺灣科技大學電機工程學系碩士論文,民國一百零六年。
    [13]陳立洋,“具雙向功率轉換之市電併網型三相永磁式 同步電動機驅動器設計”,國立臺灣科技大學電機工程學系碩士論文,民國一百零七年。
    [14]A. Monti, S. D'Arco, Y. Work, and A. Lentini, "A virtual testing facility for elevator and escalator systems," 2007 IEEE Power Electronics Specialists Conference, pp. 820-825, 2007.
    [15]R. M. Kennel, T. Boller, and J. Holtz, "Replacement of electrical (load) drives by a hardware-in-the-loop system," International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Joint Conference, pp. 17-25, 2011.
    [16]A. Schmitt, J. Richter, M. Braun, and M. Doppelbauer, "power hardware-in-the-Loop emulation of permanent magnet synchronous machines with nonlinear magnetics-concept & verification," PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-8, 2016.
    [17]A. Schmitt, M. Gommeringer, C. Rollbuhler, P. Pomnitz, and M. Braun, "A novel modulation scheme for a modular multiphase multilevel converter in a power hardware-in-the-loop emulation system," IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, pp. 001276-001281, 2015.
    [18]A. Schmitt, J. Richter, M. Gommeringer, T. Wersal, and M. Braun, "A novel 100 kW power hardware-in-the-loop emulation test bench for permanent magnet synchronous machines with nonlinear magnetics," 8th IET international conference on power electronics, machines and drives, 2016.
    [19]W. Ren, M. Steurer, and T. L. J. I. T. o. I. A. Baldwin, "Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorithms," IEEE transactions of industry applications, vol. 44, no. 4, pp. 1286-1294, 2008.
    [20]S. Grubic, B. Amlang, W. Schumacher, and A. J. I. T. o. I. E. Wenzel, "A high-performance electronic hardware-in-the-loop drive–load simulation using a linear inverter (LinVerter)," IEEE transactions on industrial electronics, vol. 57, no. 4, pp. 1208-1216, 2009.
    [21]S. Liebig, A. Schmitt, and H. Hammerer, "High-dynamic high-power e-motor emulator for power electronic testing," PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-5, 2018.
    [22]A. Schmitt, J. Richter, U. Jurkewitz, and M. Braun, "FPGA-based real-time simulation of nonlinear permanent magnet synchronous machines for power hardware-in-the-loop emulation systems," IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, pp. 3763-3769, 2014.
    [23]W. Ren, M. Steurer, and L. Qi, "Evaluating dynamic performance of modern electric drives via power-hardware-in-the-loop simulation," 2008 IEEE International Symposium on Industrial Electronics, pp. 2201-2206, 2008.
    [24]X. Wu, S. Lentijo, A. Deshmuk, A. Monti, and F. Ponci, "Design and implementation of a power-hardware-in-the-loop interface: a nonlinear load case study," Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., vol. 2, pp. 1332-1338, 2005.
    [25]M. Schnarrenberger, L. Stefanski, C. Rollbühler, D. Bräckle, and M. Braun, "A 50 kW power hardware-in-the-loop test bench for permanent magnet synchronous machines based on a modular multilevel converter," 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe), pp. P. 1-P. 10, 2018.
    [26]C. Dufour, S. Cense, T. Yamada, R. Imamura, and J. Bélanger, "Fpga permanent magnet synchronous motor floating-point models with variable-dq and spatial harmonic finite-element analysis solvers," 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), pp. LS6b. 2-1-LS6b. 2-10, 2012.
    [27]M. Novak, J. Novak, Z. Novak, J. Chysky, and O. Sivkov, "Efficiency mapping of a 100 kW PMSM for traction applications," 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), pp. 290-295, 2017.
    [28] J. Richter, P. Winzer, and M. Doppelbauer, "Einsatz virtueller prototypen bei der akausalen modellierung und simulation von permanenterregten synchronmaschinen," Internationaler ETG-Kongress 2013 (ETG-FB 139), 2013.
    [29]I. G. Park and S. I. Kim, "Modeling and analysis of multi-interphase transformers for connecting power converters in parallel," PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972, vol. 2, pp. 1164-1170, 1997.
    [30]S. Baciu, S. Trabelsi, B. Amlang, and W. Schumacher, "Linverter a low-harmonic and high-bandwidth inverter based on a parallel multilevel structure," 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), vol. 5, pp. 3927-3931, 2004.
    [31]J. Richter, P. Bäuerle, T. Gemassmer, and M. Doppelbauer, "Transient trajectory control of permanent magnet synchronous machines with nonlinear magnetics," 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 2345-2351, 2012.
    [32]L. Wang, J. Jatskevich, and H. Dommel, "Re-examination of synchronous machine modeling techniques for electromagnetic transient simulations," 2007 IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1221-1230, 2007.
    [33]S.-K. Lee, G.-H. Kang, J. Hur, and B.-W. Kim, "Design and experiment of 100kW interior permanent magnet machine for ship anti heeling system," 2012 IEEE Vehicle Power and Propulsion Conference, pp. 544-548, 2012.
    [34]A. Schmitt, M. Gommeringer, J. Kolb, M. Braun, ‘A high current, high frequency modular multiphase multilevel converter for power hardware-in-the-loop emulator,’ 2014 PCIM Europe, pp 1537-1544, 2014.
    [35]A. Schmitt, “Hochdynmische power hardware-in-the-loop emulation hoch ausgenutzter synchronmaschinen mit einem modularen-multiphasen-multilevel. umrichter”, 2017, KIT Scientific Publishing, Karlsruhe.
    [36]Analog Devices, AD2S1210 Datasheet.
    [37]C. M. Ong, “Dynamic simulations of electric machinery”, 1997, Prentice Hall PTR.
    [38]National Instruments, NI PXIe-7861 Specifications.
    [39]林祐瑄,“永磁式同步馬達及機械負載之功率應體模擬器開發”,國立臺灣科技大學電機工程學系碩士論文,民國一百零九年。
    [40]Grubic, S., B. Amlang, W. Schumacher and A. Wenzel. “A High-Performance Electronic Hardware-in-the-Loop Drive–Load Simulation Using a Linear Inverter (LinVerter).” IEEE Transactions on Industrial Electronics 57 (2010): 1208-1216.
    [41]R. Gregor, G. Valenzano, J. Rodas, J. Rodriguez-Pineiro, and D. Gregor, “Design and Implementation of an FPGA-based Real-time Simulator for a Dual Three-Phase Induction Motor Drive,” Journal of Power Electronics, vol. 16, no. 2, pp. 553–563, Mar. 2016.
    [42]Song, Y., Ran Cheng and Ke Ma. “Mission Profile Emulator for Permanent Magnet Synchronous Machine Based on Three-phase Power Electronic Converter.” 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia) (2018): 3877-3883.
    [43]C. Jing and T. Chaonan, "Sliding mode repetitive equivalent control for induction motor based on hardware-in-loop system," IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 3116-3121, doi: 10.1109/IECON.2017.8216526.
    [44]黃仲欽,電機機械理論講義 三相感應電動機之動態模式(model of three-phase induction machines)。
    [45]黃兆廷,“具四支路電感耦合的單相及三相換流器設計”,國立臺灣科技大學電機工程學系碩士論文,民國一百一十年。

    無法下載圖示 全文公開日期 2031/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE