簡易檢索 / 詳目顯示

研究生: 謝宜芳
Yi-Fang Hsieh
論文名稱: 雙層石墨烯於背閘極式場效電晶體之光熱 電效應研究
Bilayer Graphene-Based Back-Gate Field Effect Transistor for Photothermoelectric Effect
指導教授: 周賢鎧
Shyankay Jou
口試委員: 黃柏仁
Bohr-Ran Huang
胡毅
Yi Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 138
中文關鍵詞: 雙層石墨烯快速升溫化學氣象沉積法電晶體光熱電效應賽貝克係數
外文關鍵詞: Bilayer graphene, Rapid Heating CVD, Transistor, Photothermoelectric Effect, Seebeck coefficient
相關次數: 點閱:180下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究分為兩個部分,第一部分是透過磁控式濺鍍系統濺鍍一層銅膜在銅箔上以及含有氧化層之矽基板上,搭配快速升溫化學氣相沉積法製備雙層石墨烯(Bilayer graphene, BLG),分別為生長在銅箔上(BLG/foil)以及生長在含有氧化層的矽基板上(BLG/wafer),以拉曼光譜儀、XPS、AFM以及UV-vis光譜進行雙層石墨烯的分析,並和單層石墨烯的性質做比較。結果發現BLG/wafer由於電洞摻雜發生電荷轉移,2D band 相較單層的有些許的藍移,另外製備的雙層石墨烯皆有D’ band的訊號,歸因於晶格變形造成的缺陷。
以XPS分析材料之鍵結比例,以及碳、氧原子占比,對於BLG/foil其碳氧比為81:18, BLG/wafer則為67:32,氧含量的提高,推測這是石墨烯缺陷多石墨化不完全。接著由AFM及UV-vis光譜結果得出,製備的雙層石墨烯厚度為0.9 nm,穿透度為95.3 %。
第二部分為將製備的雙層石墨烯應用於背閘極式電晶體元件上,以磁控式濺鍍系統沉積元件的電極,分別是Ag/Ti以及Al,電極間以BLG做為通道,其長為20 μm,寬0.3 mm,搭配Keithley 2612 B觀測其電性結果,以Ids-Vds在不同Vg偏壓下之結果,得出製備的BLG為p-doped,用Ids-Vg得出狄拉克點並計算出電子遷移率、載子濃度以及費米能階,在Vg為10.3 V時其電子遷移率μ_e等於21.3 cm^2 V^(-1) s^(-1),載子遷移率μ_h等於15.7 cm^2 V^(-1) s^(-1),載子濃度為〖7.42×〖10〗^11 cm〗^(-2),費米能階E_F為-9.15×〖10〗^(-2) eV,賽貝克係數為-2.57×〖10〗^(-1) μV/K。
接著嘗試以532 nm之雷射光照射於元件之BLG通道,觀測其通道電流變化,激發光的能量是否使石墨烯產生伏效應或光熱電效應。


The study is divided into two parts. The first part uses magnetron sputtering system to deposit a copper film on copper foil and silicon substrate containing the oxide layer through, and then prepare the bilayer graphene (BLG) by rapid thermal chemical vapor deposition, which are named BLG/foil and BLG/wafer. The bilayer graphene was analyzed by Raman spectrometer, XPS, AFM and UV-vis spectroscopy, and compared with the single-layer graphene (SLG). It is found that the 2D band of the BLG has blue shift compared to the SLG due to charge transfer in the hole doping. The BLG has the D' band signal due to lattice deformation defects.
XPS analysis is used to obtain the bonding ratio of the material, and the proportion of carbon and oxygen atoms. The carbon-oxygen ratios are 81:18 for BLG/foil and 67:32 for BLG/wafer. Graphene defect multi-graphitization is not complete. The results of AFM and UV-vis spectroscopy showed that the thickness of BLG is 0.9 nm and transmittance of 95.3%.
The second part is to apply the BLG to the back-gate field effect transistor with Ag/Ti and Al electrodes, and the BLG as charge transport channel of 20 μm of length and 0.3 mm of width. The electrical characteristics were measured by Keithley 2612 B with different Vg biases and the results indicated that the prepared BLG was p-doped. The Dirac point is obtained by Ids-Vg and the electron mobility, carrier concentration and Fermi level are calculated. When Vg is 10.3 V, μ_e is 21.3 cm^2 V^(-1) s^(-1), μ_h is 15.7 cm^2 V^(-1) s^(-1),n is 〖7.42×〖10〗^11 cm〗^(-2), E_F is -9.15×〖10〗^(-2) eV,and Seebeck coefficient S is -2.57×〖10〗^(-1) μV/K.
Then, the channel of the FET was irradiated by a 532 nm laser, and two metal electrodes to observe whether there was photovoltaic effect or photo-thermal effect..

摘要 ii Abstract v 第一章、 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章、 文獻回顧 3 2.1 雙層石墨烯的結構與特性 3 2.2 雙層石墨烯的文獻回顧 6 2.2.1 快速升溫化學氣象沉積法 (Rapid Heating CVD, RH-CVD) 6 2.2.2 銅金屬觸媒成長石墨烯之機制 7 2.2.3 製備雙層石墨烯 9 2.3 石墨烯電晶體元件 11 2.3.1 雙層石墨烯電晶體的文獻回顧 11 2.3.2 背閘式石墨烯電晶體元件量測 13 2.3.3 載子遷移率計算 16 2.3.4 載流子濃度計算 17 2.3.5 氧化層電容與介電常數的關係 18 2.4 石墨烯光電感測元件原理 19 2.4.1 光導效應 Photoconductive effect, PCE 19 2.4.2 光伏效應 Photovoltaic effect, PVE 22 2.4.3 光熱電效應 Photo-thermoelectric effect, PTE 26 2.4.3.1 計算賽貝克係數 30 2.4.3.2 對稱金屬電極對單一材料接面元件 34 2.4.3.3 不對稱金屬電極對單一材料接面元件 37 2.4.4 受雷射激發之電性 40 第三章、 實驗儀器 42 3.1 磁控式濺鍍系統 Magnetron Sputtering 43 3.2 化學氣相沉積系統 Chemical Vapor Deposition System 43 3.3 微波電漿系統 Microwave Plasma 44 3.4 顯微拉曼光譜儀 Microscopes Raman Spectrometer 44 3.5 場發射掃描式電子顯微鏡 Field Emission Scanning Electron Microscope, FE-SEM 46 3.6 原子力顯微鏡 Atomic Force Microscope, AFM 46 3.7 X射線光電子能譜分析儀 X-ray Photoelectron Spectroscopy, XPS 47 3.8 紫外可見光譜儀 UV-vis spectrophotometer 47 第四章、 實驗方法及步驟 48 4.1 實驗材料與藥品規格 48 4.2 實驗流程 50 4.3 基板清洗 51 4.4 以RH-CVD法成長雙層石墨烯 52 4.5 生長於銅箔之石墨烯轉移至特定基板 56 4.6 石墨烯生長於含有氧化層矽基板之的溼式蝕刻 57 4.6 背閘極電晶體元件製備 58 4.6.1 電晶體元件設計 58 4.6.2 黃光微影製程 59 4.6.3 電晶體元件製備 62 4.7 背閘極電晶體元件量測系統 67 第五章、 結果與討論 68 5.1 石墨烯性質結構的探討 68 5.1.1 拉曼光譜分析 68 5.1.2 XPS結構分析 70 5.1.3 原子力顯微鏡分析 74 5.1.4 紫外可見光分析 75 5.2 雙層石墨烯場效電晶體電性分析 76 5.2.1 場效電晶體於暗室下之電性 76 5.2.2 場效電晶體受雷射激發之電性 94 5.2.3 探討元件無法量測之原因 96 第六章、 結論 103 參考文獻 105 附錄 111 A.1 元件3及元件4之電性 111 A.2 元件計算公式 120

1. Zhang, Y., Tang, T. T., Girit, C., Hao, Z., Martin, M. C., Zettl, A., Crommie, M. F., Shen, Y. R., & Wang, F. (2009). Direct observation of a widely tunable bandgap in bilayer graphene. Nature , 459(7248), 820.
2. Ohta, T., Bostwick, A., Seyller, T., Horn, K., & Rotenberg, E. (2006). Controlling the electronic structure of bilayer graphene. Science, 313(5789), 951.
3. Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F., & Vandersypen, L. M. (2008). Gate-induced insulating state in bilayer graphene devices. Nature Materials, 7(2), 151.
4. Zhan, D., Yan, J., Lai, L., Liu, L., & Shen, Z. (2012). Engineering the electronic structure of graphene. Advanced Materials, 24(30), 4055.
5. Szafrane, B. N., Fiori, G., Schall, D., Neumaier, D., & Kurz, H. (2012). Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Letters, 12(3), 1324.
6. Savage, N. (2009). Graphene makes transistors tunable. IEEE Spectrum, 46(9), 20.
7. Das, S., & Drucker, J. (2017). Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition. Nanotechnology, 28(10), 105601.
8. Tan, H., Wang, D., & Guo, Y. (2018). Thermal Growth of Graphene: A Review. Coatings, 8(1), 40.
9. Li, X., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., Colombo, L., & Ruoff, R. S. (2011). Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. Journal of the American Chemical Society, 133(9), 2816.
10. Chen, C. C., Kuo, C. J., Liao, C. D., Chang, C. F., Tseng, C. A., Liu, C. R., & Chen, Y. T. (2015). Growth of Large-area graphene single crystals in confined reaction space with diffusion-driven chemical vapor deposition. Chemistry of Materials, 27(18), 6249.
11. Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., & Pei, S. S. (2008). Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 93(11), 113103.
12. Kim, S. M., Kim, J. H., Kim, K. S., Hwangbo, Y., Yoon, J. H., Lee, E. K., Ryu, J., Lee, H. J., Cho, S., & Lee, S. M. (2014). Synthesis of CVD-graphene on rapidly heated copper foils. Nanoscale, 6(9), 4728.
13. Li, X., Cai, W., Colombo, L., & Ruoff, R. S. (2009). Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Letters, 9(12), 4268.
14. Terasawa, T. O., & Saiki, K. (2012). Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon, 50(3), 869.
15. Kim, H., Mattevi, C., Calvo, M. R., Oberg, J. C., Artiglia, L., Agnoli, S., Hirjibehedin, S., Chhowalla, M., & Saiz, E. (2012). Activation energy paths for graphene nucleation and growth on Cu. ACS Nano, 6(4), 3614.
16. Bhaviripudi, S., Jia, X., Dresselhaus, M. S., & Kong, J. (2010). Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Letters, 10(10), 4128.
17. Tu, Z., Liu, Z., Li, Y., Yang, F., Zhang, L., Zhao, Z., Xu, C., Wu, S., Liu, H., & Yang, H. (2014). Controllable growth of 1–7 layers of graphene by chemical vapour deposition. Carbon, 73, 252.
18. Nie, S., Wu, W., Xing, S., Yu, Q., Bao, J., Pei, S. S., & McCarty, K. F. (2012). Growth from below: bilayer graphene on copper by chemical vapor deposition. New Journal of Physics, 14(9), 093028.
19. Das, A., Pisana, S., Chakraborty, B., Piscanec, S., Saha, S. K., Waghmare, U. V., Novoselov, K. S., Krishnamurthy, H. R., Geim, A. K., Ferrari, A.C., & Sood, A. K. (2008). Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotechnology, 3(4), 210.
20. Fang, W., Hsu, A. L., Song, Y., & Kong, J. (2015). A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale, 7(48), 20335.
21. Schwierz, F. (2010). Graphene transistors. Nature nanotechnology, 5(7), 487.
22. Xia, F., Farmer, D. B., Lin, Y. M., & Avouris, P. (2010). Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Letters, 10(2), 715.
23. Mak, K. F., Lui, C. H., Shan, J., & Heinz, T. F. (2009). Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Physical Review Letters, 102(25), 256405..
24. Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless dirac fermions in graphene. Nature, 438(7065), 197.
25. Du, X., Skachko, I., Barker, A., & Andrei, E. Y. (2008). Approaching ballistic transport in suspended graphene. Nature Nanotechnology, 3(8), 491.
26. Farmer, D. B., Golizadeh-Mojarad, R., Perebeinos, V., Lin, Y. M., Tulevski, G. S., Tsang, J. C., & Avouris, P. (2008). Chemical doping and electron− hole conduction asymmetry in graphene devices. Nano Letters, 9(1), 388.
27. Ho, P. H., Yeh, Y. C., Wang, D. Y., Li, S. S., Chen, H. A., Chung, Y. H., Lin, C. C., Wang, W. H., & Chen, C. W. (2012). Self-encapsulated doping of n-type graphene transistors with extended air stability. ACS Nano, 6(7), 6215.
28. Klekachev, A. V., Nourbakhsh, A., Asselberghs, I., Stesmans, A. L., Heyns, M. M., & De Gendt, S. (2013). Graphene transistors and photodetectors. The Electrochemical Society Interface, 22(1), 63.
29. Mueller, T., Xia, F., Freitag, M., Tsang, J., & Avouris, P. (2009). Role of contacts in graphene transistors: A scanning photocurrent study. Physical Review B, 79(24), 245430.
30. Xia, F., Mueller, T., Lin, Y. M., Valdes-Garcia, A., & Avouris, P. (2009). Ultrafast graphene photodetector. Nature Nanotechnology, 4(12), 839.
31. Echtermeyer, T. J., Britnell, L., Jasnos, P. K., Lombardo, A., Gorbachev, R. V., Grigorenko, A. N., Geim, A. K., Ferrari, A. C., & Novoselov, K. S. (2011). Strong plasmonic enhancement of photovoltage in graphene. Nature Communications, 2, 458.
32. Yan, J., Kim, M. H., Elle, J. A., Sushkov, A. B., Jenkins, G. S., Milchberg, H. W., Fuhrer, M. S., & Drew, H. D. (2012). Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotechnology, 7(7), 472.
33. Zhang, C., Fu, L., Liu, N., Liu, M., Wang, Y., & Liu, Z. (2011). Synthesis of nitrogen‐doped graphene using embedded carbon and nitrogen sources. Advanced Materials, 23(8), 1020.
34. Buscema, M., Island, J. O., Groenendijk, D. J., Blanter, S. I., Steele, G. A., van der Zant, H. S., & Castellanos-Gomez, A. (2015). Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 44(11), 3691.
35. Saleh, B. E., & Teich, M. C. (2019). Fundamentals of photonics. John Wiley & Sons.
36. Xia, F., Yan, H., & Avouris, P. (2013). The interaction of light and graphene: basics, devices, and applications. Proceedings of the IEEE, 101(7), 1717.
37. De Sanctis, A., Mehew, J. D., Craciun, M. F., & Russo, S. (2018). Graphene-based light sensing: fabrication, characterisation, physical properties and performance. Materials, 11(9), 1762.
38. Omkaram, I., Hong, Y. K., & Kim, S. (2017). Transition Metal Dichalcogenide Photodetectors. In Two-dimensional Materials for Photodetector. IntechOpen.
39. Webb, J. A., & Bardhan, R. (2014). Emerging advances in nanomedicine with engineered gold nanostructures. Nanoscale, 6(5), 2502.
40. Song, J. C., Rudner, M. S., Marcus, C. M., & Levitov, L. S. (2011). Hot carrier transport and photocurrent response in graphene. Nano Letters, 11(11), 4688.
41. Winzer, T., Knorr, A., & Malic, E. (2010). Carrier multiplication in graphene. Nano Letters, 10(12), 4839.
42. Checkelsky, J. G., & Ong, N. P. (2009). Thermopower and Nernst effect in graphene in a magnetic field. Physical Review B, 80(8), 081413.
43. Zuev, Y. M., Chang, W., & Kim, P. (2009). Thermoelectric and magnetothermoelectric transport measurements of graphene. Physical Review Letters, 102(9), 096807.
44. Nam, S. G., Ki, D. K., & Lee, H. J. (2010). Thermoelectric transport of massive Dirac fermions in bilayer graphene. Physical Review B, 82(24), 245416.
45. Park, J., He, G., Feenstra, R. M., & Li, A. P. (2013). Atomic-scale mapping of thermoelectric power on graphene: Role of defects and boundaries. Nano Letters, 13(7), 3269.
46. Sidorov, A. N., Sherehiy, A., Jayasinghe, R., Stallard, R., Benjamin, D. K., Yu, Q., Liu, Z., Wu, W., Cao, H., Chen, Y. P., Jiang, Z., & Sumanasekera, G. U. (2011). Thermoelectric power of graphene as surface charge doping indicator. Applied Physics Letters, 99(1), 013115.
47. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M., & McEuen, P. L. (2009). Photo-thermoelectric effect at a graphene interface junction. Nano Letters, 10(2), 562.
48. McCann, E. and M. Koshino, The electronic properties of bilayer graphene. Reports on Progress in Physics, 2013. 76(5), 31.
49. Tielrooij, K. J., Massicotte, M., Piatkowski, L., Woessner, A., Ma, Q., Jarillo-Herrero, P., Hulst, N. F. van., & Koppens, F. H. L. (2015). Hot-carrier photocurrent effects at graphene–metal interfaces. Journal of Physics: Condensed Matter, 27(16), 164207.
50. Song, J. C., Tielrooij, K. J., Koppens, F. H., & Levitov, L. S. (2013). Photoexcited carrier dynamics and impact-excitation cascade in graphene. Physical Review B, 87(15), 155429.
51. Cai, X., Sushkov, A. B., Suess, R. J., Jadidi, M. M., Jenkins, G. S., Nyakiti, L. O., Myers-Ward, R. L., Li, S., Yan, J., Kurt Gaskill, D., Thomas, E., & Murphy, T. E. (2014). Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nature Nanotechnology, 9(10), 814.
52. Wei, X., Yan, F. G., Shen, C., Lv, Q. S., & Wang, K. Y. (2017). Photodetectors based on junctions of two-dimensional transition metal dichalcogenides. Chinese Physics B, 26(3), 038504.
53. Choi, M. S., Qu, D., Lee, D., Liu, X., Watanabe, K., Taniguchi, T., & Yoo, W. J. (2014). Lateral MoS2 p–n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano, 8(9), 9332.
54. Fontana, M., Deppe, T., Boyd, A. K., Rinzan, M., Liu, A. Y., Paranjape, M., & Barbara, P. (2013). Electron-hole transport and photovoltaic effect in gated MoS 2 Schottky junctions. Scientific Reports, 3, 1634.
55. Huang, D., Zou, Y., Jiao, F., Zhang, F., Zang, Y., Di, C. A., Xu,W., & Zhu, D. (2015). Interface-Located Photothermoelectric Effect of Organic Thermoelectric Materials in Enabling NIR Detection. ACS applied materials & interfaces, 7(17), 8968.
56. Graves, P. R. G. D. J., & Gardiner, D. (1989). Practical raman spectroscopy. Springer.
57. Su, C. Y., Lu, A. Y., Wu, C. Y., Li, Y. T., Liu, K. K., Zhang, W., Lin, S. Y., Juang, Z. Y., Zhong, Y. L., & Li, L. J. (2011). Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Letters, 11(9), 3612.
58. Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R. D., Colombo, L., & Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 9(12), 4359.
59. 蕭宏, (2012). 半導體製程技術導論, 全華圖書.
60. Moser, J., Barreiro, A., & Bachtold, A. (2007). Current-induced cleaning of graphene. Applied Physics Letters, 91(16), 163513.
61. Jiang, J., Pachter, R., Mehmood, F., Islam, A. E., Maruyama, B., & Boeckl, J. J. (2015). A Raman spectroscopy signature for characterizing defective single-layer graphene: Defect-induced I (D)/I (D′) intensity ratio by theoretical analysis. Carbon, 90, 53.
62. Ni, Z., Wang, Y., Yu, T., & Shen, Z. (2008). Raman spectroscopy and imaging of graphene. Nano Research, 1(4), 273.
63. Kusunoki, I., Sakai, M., Igari, Y., Ishidzuka, S., Takami, T., Takaoka, T., Nishitani-Gamo, M., & Ando, T. (2001). XPS study of nitridation of diamond and graphite with a nitrogen ion beam. Surface Science, 492(3), 315.
64. Crist, B. V. (2007). A review of XPS data-banks. XPS reports, 1(1), 1.
65. Shen, Z., Li, J., Yi, M., Zhang, X., & Ma, S. (2011). Preparation of graphene by jet cavitation. Nanotechnology, 22(36), 365306.
66. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308.
67. Zainy, M., Huang, N. M., Kumar, S. V., Lim, H. N., Chia, C. H., & Harrison, I. (2012). Simple and scalable preparation of reduced graphene oxide–silver nanocomposites via rapid thermal treatment. Materials Letters, 89, 180.
68. Patel, R. (2015). Fabrication and Characterization of Graphene based Biocompatible Ion-Sensitive Field Effect Transistor (ISFET). University of South Carolina, Thesis.
69. Kalon, G., Jun Shin, Y., Giang Truong, V., Kalitsov, A., & Yang, H. (2011). The role of charge traps in inducing hysteresis: Capacitance–voltage measurements on top gated bilayer graphene. Applied Physics Letters, 99(8), 083109.
70. Hwang, E. H., Adam, S., & Sarma, S. D. (2007). Carrier transport in two-dimensional graphene layers. Physical Review Letters, 98(18), 186806.
71. 李沐宸, (2012). 石墨烯薄膜場效電晶體之製程及特性研究, 奈米暨微系統工程研究所, 國立成功大學, 碩士論文.
72. Fitzer, E., Kochling, K. H., Boehm, H. P., & Marsh, H. (1995). Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995). Pure and Applied Chemistry, 67(3), 473.
73. Haider, G., Ravindranath, R., Chen, T. P., Roy, P., Roy, P. K., Cai, S. Y., Chang, H. T., & Chen, Y. F. (2017). Dirac point induced ultralow-threshold laser and giant optoelectronic quantum oscillations in graphene-based heterojunctions. Nature Communications, 8(1), 256.

無法下載圖示 全文公開日期 2022/01/09 (校內網路)
全文公開日期 2025/01/09 (校外網路)
全文公開日期 2025/01/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE