簡易檢索 / 詳目顯示

研究生: 郭建良
CHIEN-LIANG KUO
論文名稱: SCR後處理系統之建模與控制
Modelling and Control of SCR Aftertreatment System
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 盧昭暉
Jau-Huai Lu
林昇佃
Shawn D. Lin
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 132
中文關鍵詞: 選擇性還原觸媒模型預測控制
外文關鍵詞: SCR, MPC
相關次數: 點閱:322下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 選擇性還原觸媒(Selective Catalyst Reduction, SCR)藉由額外注入的尿素水溶液來有效地降低柴油引擎所排放的NOx污染物。由於柴油引擎的排氣流量及溫度皆會影響觸媒化學反應的變化情形,為了實現SCR應用於車輛排氣污染後處理技術,本篇論文建立一個SCR物理模型並依模型為基礎方式來進行控制器設計。控制目標為SCR觸媒系統縱使處於暫態操作期間,引擎排放的NOx污染必須被抑制,同時維持NH3的洩漏量於可接受的範圍內。由於SCR物理模型存在著多個控制目標以及逐步改變的限制條件,適合應用模型為基礎的最佳控制方式,例如模型預測控制器(Model Predictive Control, MPC)。為了達到最佳的NOx轉換效率並抑制NH3洩漏量,閉迴路模擬結果顯示出必須藉由預測模型所提供資訊來獲得系統熱動態變化。閉迴路控制結果除了自行設定的引擎操作條件外,亦包括實際引擎操作於ESC及FTP循環下的實驗數據進行測試。模擬結果分別顯示出$NO_x$平均轉化率可達到94%及93%,同時NH3的平均洩漏量少於9 ppm及10 ppm。實測部分則包含實際硬體下閉迴路控制的實際尿素噴注量與模擬計算噴注量之比較。


    The urea-water-solution based selective catalyst reduction(SCR) system is one of the effective device to reduce the NOx emission of diesel engines. In order to realize the SCR technology in automotive application, a model-based approach is used for controller design in this paper. NOx emission must be regulated while NH3 slip is maintained at acceptable level even during the transient driving cycle. The existence of SCR model, pointwise-in-time constraints and multiple control objectives motivate the application of model-based optimization-control approaches such as model predictive control(MPC). The closed-loop simulation result shows that the thermal dynamics in the system must
    be captured in order to achieve optimal conversion efficiency and minimum NH3 slip. The closed-loop simulation based on engine-out data in ESC and FTP test cycle show an average NO_x reduction of 94% , 93% separately, while the ammonia slip is kept at an
    average value of 9 and 10 ppm. The closed-loop of hardware in the loop based on urea injection system show that the total urea injection volume same as simulation result.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII 1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 實驗系統置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 實驗硬體設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 柴油引擎系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 引擎控制設備平台. . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.1.3 氣體取樣分析系統. . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.1.4 SCR觸媒系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.5 SCR觸媒系統驅動裝置. . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.6 PC控制端周邊連結裝置. . . . . . . . . . . . . . . . . . . . . . . . . .16 2.2 實驗軟體設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 柴油引擎模型及SCR 物理模型特性及結構. . . . . . . . . . . . . . . . . . . 20 3.1 柴油引擎模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 引擎模型驗證結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 3.3 SCR基礎理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1 SCR工作原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.2 SCR觸媒組成與特性. . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 SCR系統物理模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 SCR物理模型驗證與分析. . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5.1 SCR模型穩態性能驗證. . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.2 SCR模型暫態性能驗證. . . . . . . . . . . . . . . . . . . . . . . . . . 46 4 控制器設計與分析. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . .51 4.1 模型預測控制(MPC) 策略介紹. . . . . . . . . . . . . . . . . . . . . . . .51 4.2 模型預測控制(MPC) 基本架構與原理. . . . . . . . . . . . . . . . . . . . .53 4.3 預測模型預測建立. . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 4.4 模型預測控制控制法則建立. . . . . . . . . . . . . . . . . . . . . . . . .61 4.5 系統狀態估測器建立. . . . . . . . . . . . . . . . . . . . . . . . . . . .64 4.6 模型預測控制於SCR 觸媒系統應用控制架構. . . . . . . . . . . . . . . . . .69 5 模擬及實驗結果. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . .73 5.1 SCR非線性與線性模型開迴路之模擬結果. . . . . . . . . . . . . . . . . . . 73 5.2 MPC應用於SCR 簡化模型之模擬結果. . . . . . . . . . . . . . . . . . . . . 77 5.3 MPC加入估測器之模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . 80 5.4 MPC在實際引擎排放下之模擬結果. . . . . . . . . . . . . . . . . . . . . . 83 5.4.1 MPC應用於自行設定的操作條件之穩態測試結果. . . . . . . . . . . . . . . 84 5.4.2 MPC應用於ESC cycle 之穩態測試結果. . . . . . . . . . . . . . . . . . . 85 5.4.3 MPC應用於自行設定的操作條件之暫態測試結果. . . . . . . . . . . . . . . 87 5.4.4 MPC應用於FTP cycle 之暫態測試結果. . . . . . . . . . . . . . . . . . . 89 5.4.5 MPC應用於HIL 之測試結果. . . . . . . . . . . . . . . . . . . . . . . . 90 6 結論與未來工作展望. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .93 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 未來工作與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.2.1 SCR物理模型修正及驗證. . . . . . . . . . . . . . . . . . . . . . . . . 94 6.2.2 SCR化學參數鑑別. . . . . . . . . . . . . . . . . . . . . . . . . . . .106 6.2.3 模型預測控制器修正. . . . . . . . . . . . . . . . . . . . . . . . . . 110 附錄A 符號單位. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 附錄B 名詞定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    [1] “The new generation of diesel engines,” May 2007, taiwan Maruboshi Information
    Technology Co., Ltd.
    [2] L.Guzzalla and C.H.Onder, Introduction to Modeling and Control of Internal
    Combustion Engine System. Springer, 2004.
    [3] K. W. Lin, “Selective catalytic reduction theory and investigate,” in ARTC
    internal report, 2006.
    [4] C. Ericson, NOx Modelling of a Complete Diesel Engine/SCR System. Licentiate
    Thesis, 2007.
    [5] E. Camacho and C. Bordons, Model Predictive Control. Springer, 2003.
    [6] K. Ogata, Discrete-Time Control Systems. Prentice-Hall, 1987.
    [7] J. W. Patrick and K. M. Thomas, “NOx-basic mechanisms of formation and
    destruction, and their application to emission control technologies,” Fuel,
    vol. 73, September 1994.
    [8] J. Parks, J. Tassitano, and J. Storey, “Lean NOx trap catalysis:NOx reduction
    for lean natural gas engine applications,” in 2nd Annual Advanced Stationary
    Reciprocating Engines Conference, March 2005.
    [9] B. cooper, A. McDonald, A. walker, and J. Matthey, “The development and
    on-road performance and durability of the Four-Way emission control scrt system,”
    Proceedings of DEER:9th Diesel Engine Emission reduction Conference,
    August 24-28 2003.
    [10] Z. M. Liu, J. M. Hao, L. X. Fu, J. H. Li, and X. G. Cui, “Advances in catalytic
    removal of NOx under lean-burn conditions,” Chinese Science Bulletin,
    vol. 49, pp. 2231–2241, November 2004.
    [11] S. Andersson and P. Gabriesson, “Reducing NOX in diesel exhausts by SCR
    technique: Experiments and simulations,” C.U.I. Odenbrand, AIChe J. for
    1994, 40, 1911.
    [12] J. N. Chi and H. F. M. Dacosta, “Modeling and control of a Urea-SCR aftertreatment
    system,” SAE Technical papers.
    [13] P. L. Gabrielsson, “Urea-SCR in automotive applications,” Topics in Catalysis,
    vol. 28, pp. 1–4, April 2004.
    [14] T. V.Johnson, “Diesel emission control in review,” SAE Techinical paper series,
    vol. SP-2022, April 2006.
    [15] D. Upadhyay and M. V. Nieuwstadt, “Model based analysis and control design
    of a Urea-SCR denox aftertreatment system,” ASME Journal of Dynamic
    Systems, Measurement and Control, vol. 128, 2006.
    [16] C. M. Sch¨ar, C. H. Onder, M. Elsener, and H. P. Geering, “Model-based
    control of an SCR system for mobile application,” F2004V205 Proceedings of
    World Automotive Congress,FISITA 2004.
    [17] A. Herman, M. cheng Wu, D. Cabush, and M. shost, “Model based control
    of SCR dosing and OBD strategies with feedback from nh3 sensors,” SAE
    International, vol. 01-0911, January 2009.
    [18] Q. Song and G. Zhu, “Model based closed-loop control of Urea SCR exhaust
    aftertreatment system for diesel engine,” SAE Techinical paper series, vol.
    01-0287, March 2002.
    [19] M. Devarakonda, G. Parker, and J. H.Johnson, “Model based estimation
    and control system development in a Urea-SCR aftertreatment system,” SAE
    International Journal of Fuels and Lubricants, vol. 1, March 2008.
    [20] C. Ericson, Model Based Optimization of a Complete Diesel Engine/SCR
    System. Doctoral Thesis, 2009.
    [21] C. M. Sch¨ar, C. H. Onder, and H. P. Geering, “Control of an SCR catalytic
    converter system for a moblie heavy-duty apllication,” IEEE Transactions on
    Control System Technology.
    [22] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill,
    2002.
    [23] H. Sequenz and R. I. Matthias Mrosek, “A Global-Local emission model-
    For NOx and soot emission of turbocharged CR-DIESEL engine,” Annual
    Dynamic Systems and Control Conference., March 2010.
    [24] M. Koebel, M. Elsener, and M. kleemann, “Urea-SCR:a promising technique
    to reduce NOx emissions from automotive diesel engines,” Catalysis today,
    vol. 59, pp. 335–345, 2000.
    [25] Gabrielsson and P. L. T., “Urea-SCR in automotive applications,” Top. Catal,
    2004.
    [26] M. Koebel, M. Elsener, and T. Marti., “NOx-reduction in diesel exhaust gas
    with urea and selective catalitic reduction,” Comb. Sci. and Techn, 1996.
    [27] E. G and Z. F, “Motorische verbrennung - aktuelle probleme und moderne
    l¨osungsans¨atze,” Berichte zur Energie und Verfanrenstechnik, 1999.
    [28] C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, T. Burkhardt, and
    M. Weibel, “NH3 SCR of NOx for diesel exhausts aftertreatment: role of
    NO2 in catalytic mechanism, unsteady kinetics and monolith converter modelling,”
    Chemical engineering science, vol. 62, pp. 5001–5006, 2007.
    [29] L. Lietti, I. Nova, E. Tronconi, and P. Forzatti, “Transient kinetic study of
    the SCR-DeNOx reaction,” Catalysis Today, pp. 85–92, 1998.
    [30] H. S. Fogler, Elements of chemical reaction engineering. Upper Saddle River,
    NJ, Prentice Hall PTR, 2006.
    [31] J. Richalent, A. Rault, J. L. Testud, and J. Papon, “Model predictive heuristic
    control: Applications to industrial processes,” Automatica, vol. 14, pp. 413–
    428, 1978.
    [32] D. Edouard, P. Dufour, and H. Hammouri, “Observer based multivariable
    control of catalytic reverse flow reactor: comparsion between LQR and MPC
    approachs,” Computers &Chemical Engineering, vol. 29, pp. 851–865, 2005.
    [33] M. Nikolaou, “Model predictive controllers a critical synthesis of theory and
    industrial needs,” Advance in Chemical Engineering, vol. 26, p. 134, 2001.
    [34] R. Rouhani and R. K. Mehra, “Model algorithmic control (MAC): basic theoretical
    properties,” Automatica, vol. 18, pp. 401–414, 1982.
    [35] C. Cutler and B. L. Ramaker, “Dynamic matrix control- A computer control
    algorithm,” Automatic Control Conference, pp. 1–6, 1980.
    [36] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control-
    Part I. the basic algorithm,” Automatic, vol. 23, pp. 137–148, 1987.
    [37] ——, “Generalized predictive control Part II. extensions and interpretations,”
    Automatic, vol. 23, pp. 149–160, 1987.
    [38] W. H. Kwon and D. G. Byun, “Receding horizon tracking control as a predictive
    control and its stability properties,” International Journal of Control,
    vol. 50, pp. 1807–1824, 1989.
    [39] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
    Transacctions of the ASME-journal of basic engineering, vol. 82, pp. 35–45,
    1960.
    [40] I. Nova, L. Lietti, E. Tronconi, and P. Forzatti, “Dynamics of SCR reaction
    over a TiO2”-supported vanadia-tungsta commercial catalyst,” Catalysis
    Today, vol. 60, pp. 73–82, 2000.
    [41] H. J. Chae, S. T. Choo, H. Choi, and I.-S. Nam, “Direct use of kinetic parameters
    for modeling and simulation of a selective catalytic reduction process,”
    American Chemical Society, vol. 39, pp. 1159–1170, 2000.
    [42] H. J. Seong, “Selective catalytic reduction(SCR) of NO by NH3 in a fixed-bed
    reactor,” eGEE 520.
    [43] I. Nova, C. Ciardelli, and E. Tronconi, “NH3 ¡ SCR of NO over a V-based
    catalyst: Low-T redox kinetics with NH3 inhibition,” American Institute
    Chemical Engineers, vol. 52, p. NO.9, 2006.

    QR CODE