簡易檢索 / 詳目顯示

研究生: 林家賦
Jia-Fu Lin
論文名稱: 以改良型金雕演算法進行太陽能最大功率追蹤控制以克服局部遮蔽問題
A Modified Golden Eagle Optimization Algorithm for Photovoltaic Maximum Power Point Tracking Control under Partial Shading
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 吳啟瑞
Wei-Tzer Huang
黃維澤
Wei-Tzer Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 111
中文關鍵詞: 部分遮蔭現象太陽能最大功率追蹤光伏系統金雕演算法
外文關鍵詞: Partial shading condition (PSC), Maximum power point tracking (MPPT), Photovoltaic (PV) system, Golden eagle optimizer (GEO)
相關次數: 點閱:384下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

太陽能光伏系統在實際運轉時常會遇到部分遮蔽現象(Partial shading condition, PSC)。此現象本身會對太陽能光伏系統的輸出功率造成巨幅的下降。因此,大部分文獻會應用元啟發演算(Metaheuristic algorithm, MHA)來幫助尋找全局的最優解。而元啟發式演算法類別之中的仿生元啟發式演算法(Nature-inspired metaheuristic algorithm, NIMHA)可以在多峰的功率-電壓曲線中追蹤到最大功率點。

金雕演算法(Golden eagle optimization, GEO)是一個全新的仿生元啟發式演算法。此演算法可以解決很多需要獲得優化的問題,其中包含太陽能光伏系統的最大功率追蹤(Maximum power point tracking, MPPT)。不過原始金雕演算法的準度和追蹤時間還有可以被改善的部分。而且由於部分遮蔽的情況是會隨著時間改變的,為了針對真實環境狀況下的最大功率追蹤情況,太陽能最大功率追蹤的動態準度改善也需要一併納入考量之中。

因此,本論文中提出了一個增強型的改良金雕演算法(Enhanced modified golden eagle optimization, EMGEO),在原始版本的金雕演算法中加入了非線性的收斂因子和鷹撲的動物行為並且透過Matlab的模擬和太陽能最大功率追蹤的實際硬體實驗,本論文中提出的增強型改良金雕演算法在實際硬體的實驗中大幅地縮短了最大功率點的追蹤時間(縮短的平均時間量約為原始金鷹演算法追蹤時間的39.45%),而且平均上太陽能最大功率追蹤的動態準度上升大約1.78%。且相較於粒子群演算法(Particle swarm optimization, PSO)、灰狼演算法(Grey wolf optimization, GWO)以及蝙蝠演算法(Bat algorithm, BA),平均上增強型改良金雕演算法(EMGEO)在太陽能最大功率追蹤(MPPT)的動態準度上升大約1.59%、3.24%以及3.92%。


There is one common problem often happened when solar photovoltaic (PV)
system operating in real-world situation, that is the partial shading condition (PSC). This phenomenon will cause the output power of a solar PV system drastically decrease. To ameliorate this problem, meta-heuristic algorithms (MHAs) can be applied for MPPT. One type of MHAs, which is named nature-inspired meta-heuristic algorithms (NIMHA). This type of algorithms can track the maximum power point of multiple-peak P-V curves.

Golden eagle optimization (GEO) algorithm is a new optimization algorithm
which is based on NIMHA. This algorithm can be applied to solve many problems
which need to be optimized, including solar PV system for MPPT. However, the
accuracy and tracking time in the conventional GEO can still be further improved.

Therefore, an enhanced modified golden eagle optimization (EMGEO) is proposed in this thesis. The proposed method adds the nonlinear convergence factor
and golden eagle pouncing behavior in the GEO. It is shown that, the proposed
EMGEO algorithm can drastically reduce the maximum power point of tracking
time and also enhance the dynamic tracking accuracy. On average, the proposed
EMGEO can save 39.45% of the tracking time and an improvement of 1.78% in
the dynamic tracking accuracy can be achieved, as compared to GEO. And for the
proposed EMGEO, on average, an improvement of 1.59%, 3.24% and 3.92% in the
dynamic tracking accuracy can be achieved, as compared to PSO, GWO and BA,
respectively.

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background & Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 INTRODUCTION of PHOTOVOLTAIC and PARTIAL SHADING CONDITION PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Introduction of Photovoltaic . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Principle of Generating Photovoltaic Power . . . . . . . . . . . 6 2.1.2 Ideal PV Cell Module . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 One Diode Module of PV Cell Module . . . . . . . . . . . . . 7 2.2 The Partial Shading Condition Problems . . . . . . . . . . . . . . . . 10 3 GOLDEN EAGLE OPTIMIZER . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.1 Attack (exploitation) . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.2 Cruise (exploration) . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.3 Transition from Exploration to Exploitation . . . . . . . . . . 19 3.2.4 Moving to New Positions . . . . . . . . . . . . . . . . . . . . . 21 3.3 GEO Program Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . 22 4 PROPOSED ENHANCED MODIFIED GOLDEN EAGLE OPTIMIZATION ALGORITHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 Proposed EMGEO Algorithm . . . . . . . . . . . . . . . . . . . . . . 26 4.2 EMGEO Program Flow Chart . . . . . . . . . . . . . . . . . . . . . . 29 5 OTHER META-HEURISTIC ALGORITHMS for COMPARISON . . . . . 32 5.1 Particle Swarm Optimizer (PSO) . . . . . . . . . . . . . . . . . . . . 32 5.2 Grey Wolf Optimizer (GWO) . . . . . . . . . . . . . . . . . . . . . . 33 5.3 Bat Algorithm (BA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6 SIMULATION SETUP and ALGORITHM VALIDATION . . . . . . . . . 37 6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.1 Algorithms Implementation . . . . . . . . . . . . . . . . . . . 37 6.1.2 P-V Curve Setup . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7 MPPT EXPERIMENTAL SETUP and ALGORITHM VALIDATION . . . 53 7.1 Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.2 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.2.1 Static Case MPPT Experimental Result . . . . . . . . . . . . 58 7.2.2 Dynamic Case MPPT Experimental Result . . . . . . . . . . . 71 7.2.3 Reverse Dynamic Case MPPT Experimental Result . . . . . . 77 7.2.4 Rapidly Changing Dynamic Case MPPT Experimental Result 82 7.2.5 Total Dynamic Cases Result Comparison . . . . . . . . . . . . 87 8 CONCLUSION & FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 89 8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

[1] T. Mai, M. M. Hand, S. F. Baldwin, R. H. Wiser, G. L. Brinkman, P. Denholm,
D. J. Arent, G. Porro, D. Sandor, D. J. Hostick, M. Milligan, E. A. DeMeo,
and M. Bazilian, "Renewable electricity futures for the united states," IEEE
Transactions on Sustainable Energy, vol. 5, no. 2, pp. 372-378, 2014.

[2] R. M. Elavarasan, G. Shafiullah, S. Padmanaban, N. M. Kumar, A. Annam,
A. M. Vetrichelvan, L. Mihet-Popa, and J. B. Holm-Nielsen, "A comprehensive review on renewable energy development, challenges, and policies of leading indian states with an international perspective," IEEE Access, vol. 8, pp.
74432-74457, 2020.

[3] G. Petrone, G. Spagnuolo, R. Teodorescu, M. Veerachary, and M. Vitelli, "Reliability issues in photovoltaic power processing systems," IEEE Transactions
on Industrial Electronics, vol. 55, no. 7, pp. 2569-2580, July 2008.

[4] D. F. Teshome, C. H. Lee, Y. W. Lin, and K. L. Lian, "A modified firefly
algorithm for photovoltaic maximum power point tracking control under partial
shading," IEEE Journal of Emerging and Selected Topics in Power Electronics,
vol. 5, no. 2, pp. 661-671, June 2017.

[5] M. Kamran, M. Mudassar, M. R. Fazal, M. U. Asghar, M. Bilal, and
R. Asghar, "Implementation of improved perturb and observe mppt technique
with confined search space for standalone photovoltaic system," Journal of
King Saud University - Engineering Sciences, vol. 32, no. 7, pp. 432-441,
2020, photovoltaic Materials, Devices and Systems. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S101836391730380X

[6] D. C. Jones and R. W. Erickson, "Probabilistic analysis of a generalized perturb and observe algorithm featuring robust operation in the presence of power curve traps," IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2912-2926, 2013.

[7] R. C. N. Pilawa-Podgurski, W. Li, I. Celanovic, and D. J. Perreault, "Integrated cmos energy harvesting converter with digital maximum power point tracking for a portable thermophotovoltaic power generator," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 4, pp. 1021-1035, Dec 2015.

[8] X. Xiao, X. Huang, and Q. Kang, "A hill-climbing-method-based maximum-power-point-tracking strategy for direct-drive wave energy converters," IEEE
Transactions on Industrial Electronics, vol. 63, no. 1, pp. 257-267, 2016.

[9] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, "Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point
in microgrid standalone photovoltaic system," IEEE Transactions on Power
Electronics, vol. 26, no. 4, pp. 1022-1030, April 2011.

[10] G. Hsieh, H. Hsieh, C. Tsai, and C. Wang, "Photovoltaic power-increment-aided incremental-conductance mppt with two-phased tracking," IEEE Transactions
on Power Electronics, vol. 28, no. 6, pp. 2895-2911, June 2013.

[11] T. Latif and S. R. Hussain, "Design of a charge controller based on sepic and buck topology using modified incremental conductance mppt," in 8th International Conference on Electrical and Computer Engineering, 2014, pp. 824-827.

[12] Syafaruddin, E. Karatepe, and T. Hiyama, "Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under
partially shaded conditions," IET Renewable Power Generation, vol. 3, no. 2,
pp. 239-253, June 2009.

[13] K. Jyotheeswara Reddy and N. Sudhakar, "High voltage gain interleaved boost
converter with neural network based mppt controller for fuel cell based electric
vehicle applications," IEEE Access, vol. 6, pp. 3899-3908, 2018.

[14] K. Ishaque and Z. Salam, "A review of maximum power point tracking
techniques of pv system for uniform insolation and partial shading condition,"
Renewable and Sustainable Energy Reviews, vol. 19, pp. 475-488, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032112006442

[15] Y.-H. Liu, J.-H. Chen, and J.-W. Huang, "A review of maximum power point
tracking techniques for use in partially shaded conditions," Renewable and Sustainable Energy Reviews, vol. 41, pp. 436-453, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S136403211400714X

[16] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr, "A survey on
metaheuristics for stochastic combinatorial optimization," Natural Computing,
vol. 8, pp. 239-287, 2009.

[17] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of
ICNN'95 International Conference on Neural Networks, vol. 4, Nov 1995, pp.1942-1948 vol.4.

[18] G. Liu, J. Zhu, H. Tao, W. Wang, and F. Blaabjerg, "A mppt algorithm based
on pso for pv array under partially shaded condition," in 2019 22nd International
Conference on Electrical Machines and Systems (ICEMS), 2019, pp. 1-5.

[19] K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, "An improved particle swarm optimization based mppt for pv with reduced steady-state oscillation," IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3627-3638, Aug 2012.

[20] Y. Liu, S. Huang, J. Huang, and W. Liang, "A particle swarm optimization
based maximum power point tracking algorithm for pv systems operating under
partially shaded conditions," IEEE Transactions on Energy Conversion, vol. 27,
no. 4, pp. 1027-1035, Dec 2012.

[21] K. Ishaque and Z. Salam, "A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition," IEEE Transactions on Industrial Electronics, vol. 60, no. 8, pp. 3195-3206, Aug 2013.

[22] B. S. I. Staff, Overall Efficiency of Grid Connected Photovoltaic Inverters. B S I Standards, 2010. [Online]. Available: https://books.google.com.tw/books? id=NXTknAEACAAJ

[23] X. Yang and A. H. Gandomi, "Bat algorithm: a novel approach for global
engineering optimization," Engineering Computations, vol. 29, no. 5, pp. 464-483, 2012. [Online]. Available: https://doi.org/10.1108/02644401211235834

[24] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer," Advances in Engineering Software, vol. 69, pp. 46-61, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0965997813001853

[25] A. Mohammadi-Balani, M. Dehghan Nayeri, A. Azar, and M. TaghizadehYazdi, "Golden eagle optimizer: A nature-inspired metaheuristic algorithm,"
Computers and Industrial Engineering, vol. 152, p. 107050, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360835220307208

[26] A. M. Eltamaly, M. S. Al-Saud, and A. G. Abokhalil, "A novel bat algorithm
strategy for maximum power point tracker of photovoltaic energy systems under
dynamic partial shading," IEEE Access, vol. 8, pp. 10048-10060, 2020.

[27] I. S. Millah, P. C. Chang, D. F. Teshome, R. K. Subroto, K. L. Lian, and J.-F. Lin, "An enhanced grey wolf optimization algorithm for photovoltaic maximum
power point tracking control under partial shading conditions," IEEE Open
Journal of the Industrial Electronics Society, vol. 3, pp. 392-408, 2022.

[28] Z. A. Khan, S. F. Akhter, S. Islam, and F. Abid, "A golden eagle optimization based mppt control for partial shading conditions," in 2022 IEEE International Conference on Power Electronics, Smart Grid, and Renewable Energy (PESGRE), 2022, pp. 1-6.

[29] H. A. B. Siddique, P. Xu, and R. W. De Doncker, "Parameter extraction algorithm for one-diode model of pv panels based on datasheet values," in 2013
International Conference on Clean Electrical Power (ICCEP), June 2013, pp. 7-13.

[30] B. Goss, I. Cole, E. Koubli, D. Palmer, T. Betts, and R. Gottschalg, "4 - modelling and prediction of pv module energy yield," in The Performance of
Photovoltaic (PV) Systems, N. Pearsall, Ed. Woodhead Publishing, 2017, pp.
103-132. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/B9781782423362000045

[31] R. A. Mastromauro, M. Liserre, and A. Dell'Aquila, "Control issues in single-stage photovoltaic systems: Mppt, current and voltage control," IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp. 241-254, 2012.
94

[32] X. Ma, D. Jiandong, W. Xiao, S. Tuo, W. Yanhang, and S. Ting, "Research
of photovoltaic systems mppt based on improved grey wolf algorithm under
partial shading conditions," 10 2018, pp. 1-6.

[33] N. Mittal, U. Singh, and B. S. Sohi, "Modified grey wolf optimizer for
global engineering optimization," Applied Computational Intelligence and Soft
Computing, 2016. [Online]. Available: https://www.hindawi.com/journals/ acisc/2016/7950348/cta/

[34] M. Miyatake, M. Veerachary, F. Toriumi, N. Fujii, and H. Ko, "Maximum
power point tracking of multiple photovoltaic arrays: A pso approach," IEEE
Transactions on Aerospace and Electronic Systems, vol. 47, no. 1, pp. 367-380,
2011.

無法下載圖示 全文公開日期 2032/08/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE