簡易檢索 / 詳目顯示

研究生: 謝宛珊
Wan-shan Hsieh
論文名稱: 以直線近似法為基礎之太陽能最大功率追蹤技術研究
Research on the Maximum Power Point Tracking Technology Based on Linear Approximation Method
指導教授: 劉益華
Yi-Hua Liu
口試委員: 羅有綱
Yu-Kang Lo
鄧人豪
Teng, Jen-Hao
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 80
中文關鍵詞: 太陽能發電系統最大功率點最大功率追蹤
外文關鍵詞: pv, pgs, mpp, mppt
相關次數: 點閱:191下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於石油燃料的枯竭和環境污染與日俱增,使得再生能源系統的發展日益增加。再生能源當中,太陽能(PV)發電系統(PGS)為一個方便且有潛力的解決方案,因為它產出的電能是由太陽能輻射直接轉換而成的,不會對環境造成污染。使用太陽能電池所面臨的挑戰主要是其I-V特性是非線性的,使得其P-V曲線上會有唯一的最大功率點(MPP)。因此,發展出具有響應速度快且在任何天氣條件都能夠有效地利用所產生的電力之最大功率點追蹤(MPPT)技術是必需的。本文提出以直線近似法為基礎之簡單而快速的MPPT方法,所提出的技術模型為使用數值近似之非線性的I-V特性的太陽能電池,利用最小平方法精確地模擬MPP的軌跡。本文以類比的方式,使用低成本、低功耗的類比元件來實現。類比電路實現的優點涵括成本競爭力和尺寸的緊密度,根據模擬和實驗結果可證明所提出的方法有響應速度快、追蹤精確度高的優點。


    Recently, as the fossil fuel exhaustion and environmental pollutions are intensified, interests on developing renewable energy systems have been increased continuously. Among those renewable energy sources, the photovoltaic (PV) power generation systems (PGS) become a convenient and promising solution because they produce electric power without introducing environmental pollution by directly transforming solar irradiations into electricity. A major challenge for using the PV cell is that its I–V characteristics is nonlinear, which results in a unique maximum power point (MPP) on its P–V curve. Therefore, a maximum power point tracking (MPPT) technique which has quick response and is able to make good use of the electric power generated in any weather condition is required. In this thesis, a simple and fast MPPT method based on linear approximation method is proposed. The presented technique models the nonlinear I–V characteristics of the solar panel using numerical approximations. Least squares method is utilized to accurately model the MPP locus. The proposed method is implemented in analog form using low-cost, low-power analog components. The advantages of the analog circuit implementation include cost competitiveness and compactness of size. According to the simulation and experimental results, the proposed method boasts the advantages of fast response and high tracking accuracy.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 太陽能最大功率追蹤系統架構 3 1.4 論文大綱 4 第二章 太陽能電池介紹 5 2.1 太陽能電池發展簡介 5 2.2 太陽能電池種類 6 2.3 太陽能電池特性 8 第三章 太陽能最大功率追蹤技術 13 3.1 最大功率追蹤技術簡介與分類 13 3.2 類比式最大功率追蹤技術 13 3.2.1 標的量測法 13 3.2.2 直線近似法 14 3.3 數位式最大功率追蹤技術 15 3.3.1 開路電壓法 16 3.3.2 短路電流法 16 3.3.3 擾動觀察法 17 3.3.4 增量電導法 19 3.3.5 模糊控制法 21 3.3.6 變動步階追蹤法 22 3.4 各種演算法之比較 23 第四章 太陽能最大功率追蹤之硬體架構與設計 24 4.1 升壓式轉換器介紹 25 4.2 升壓式轉換器原理 26 4.3 升壓式轉換器元件值設計 30 第五章 以直線近似法為基礎之太陽能最大功率追蹤技術 36 5.1 以直線近似法為基礎之最大功率追蹤法則推導 36 5.2 以直線近似法為基礎之最大功率追蹤法 之單一直線方程式設計 41 5.3 以直線近似法為基礎之最大功率追蹤法動作原理 49 5.4 以直線近似法為基礎之類比最大功率追蹤器設計 52 5.5 以直線近似法為基礎之類比最大功率追蹤器實現範例 55 第六章 模擬與實驗結果 59 6.1 以直線近似法為基礎之類比最大功率追蹤器電路模擬 59 6.2 以直線近似法為基礎之類比最大功率追蹤器實驗波形 64 第七章 結論與未來研究方向 74 7.1 結論 74 7.2 未來研究方向 74 參考文獻 76

    [1] 上海市科學技術委員會, Available at: http://www.stcsm.gov.cn/
    [2] 行政院經濟建設委員會, Available at: http://www.cepd.gov.tw/
    [3] SolarServer, Available at: http://www.solarserver.com/
    [4] 翁敏航、楊茹媛、管鴻、晁成虎,「太陽能電池:原理、元件、材料、製程與檢測技術」,初版,東華書局,民國九十九年五月。
    [5] 顧鴻濤,「太陽能電池元件導論:材料、元件、製程、系統」,初版二刷,全威圖書,民國九十八年十月。
    [6] 戴寶通、鄭晃忠,「太陽能電池技術手冊」台灣電子材料與元件協會,民國九十六年六月。
    [7] Y. J. Wang and P. C. Hsu, “Analytical Modelling of Partial Shading and Different Orientation of Photovoltaic Modules,” IET Renew. Power Gener., vol. 4, no. 3, pp. 272–282, May 2010.
    [8] 黃嘉偉,「適用於快速變動環境之太陽能最大功率追蹤技術研究」,國立台灣科技大學電機工程所博士論文,民國一百零一年七月。
    [9] 劉俊良,「以模糊控制為基礎之太陽能最大功率追蹤演算法研究」,國立台灣科技大學電機工程所碩士論文,民國一百年一月。
    [10] A. Tariq and J. Asghar, “Development of an Analog Maximum Power Point Tracker for Photovoltaic Panel,” International Conference on Power Electron. and Drives Systems, pp. 251–255, 2005.
    [11] V. Scarpa, S. Buso, and G. Spiazzi, “Low-Complexity MPPT Technique Exploiting the PV Module MPP Locus Characterization,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1531–1538, May 2009.
    [12] M. Sokolov and D. Shmilovitz, “A Modified MPPT Scheme for Accelerated Convergence,” IEEE Trans. Energy Convers., vol. 23, no. 4, pp. 1105–1107, Dec. 2008.
    [13] C. T. Pan, J. Y. Chen, C. P. Chu, and Y. S. Huang; “A Fast Maximum Power Point Tracker for Photovoltaic Power Systems,” IEEE Ind. Electron. Conference, IECON, pp. 390–393, Nov. 1999.
    [14] Y. H. Liu and J. W. Huang, “A Fast and Low Cost Analog Maximum Power Point Tracking Method for Low Power Photovoltaic Systems,” Solar Energy, vol. 85, no. 11, pp. 2771–2780, Nov. 2011.
    [15] M. A. S. Masoum, S. M. M. Badejani, and E. F. Fuchs, “Microprocessor-Controlled New Class of Optimal Battery Chargers for Photovoltaic Applications,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 599–606, Sep. 2004.
    [16] 振芫禎,「太陽能最大功率追蹤器之研究」,大同大學電機工程所碩士論文,民國九十六年六月。
    [17] D. Dondi, A. Bertacchini, D. Brunelli, L. Larcher, and L. Benini, “Theoretical and Experimental Analyses of Photovoltaic Systems with Voltage- and Current-Based Maximum Power-Point Tracking,” IEEE Trans. Energy Convers., vol. 17, no. 4, pp. 514–522, Dec. 2002.
    [18] H. Patel and V. Agarwal, “Investigations into the Performance of Photovoltaics-Based Active Filter Configurations and their Control Schemesunder Uniform and Non-Uniform Radiation Conditions,” IET Renewable Power Gener., vol. 4, no. 1, pp. 12–22, Jan. 2010.
    [19] S. H. Park, G. R. Cha,Y. C. Jung, and C. Y. Won, “Design and Application for PV Generation System Using a Soft-Switching Boost Converter with SARC,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 515–522, Feb. 2010.
    [20] A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. Enjeti, “High Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic Based Microgrids,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1010–1021, Apr. 2011.
    [21] G. J. Yu, Y. S. Jung, J. Y. Choi, and G. S. Kim, “A Novel Two-Mode MPPT Control Algorithm Based on Comparative Study of Existing Algorithms,” Sol. Energy, vol. 76, no. 4, pp. 455–463, Apr. 2004.
    [22] H. Koizumi, T. Mizuno, T. Kaito, Y. Noda, N. Goshima, M. Kawasaki, K. Nagasaka, and K. Kurokawa, “A Novel Microcontroller for Grid Connected Photovoltaic Systems,” IEEE Trans. Ind. Electron., vol. 53, no. 6, pp. 1889–1897, Dec. 2006.
    [23] B. Choi, S. Kwak, and B.K. Kim, “Design of a Single-Input Fuzzy Logic Controller and its Properties,” ELSEVIER Fuzzy Sets and Systems 106, Sep. 1999.
    [24] B. Choi, S. Kwak, and B.K. Kim, “Design and Stability Analysis of Single-Input Fuzzy Logic Controller,” IEEE Transactions on Systems, Man, and Cybernetics., Part B: Cybernetics, vol. 30, pp. 303-309, 2002.
    [25] M. A. S. Masoum and M. Sarvi, “Design, Simulation and Construction of a New Fuzzy-Based Maximum Power Point Tracker for Photovoltaic Applications,” 2002.
    [26] G. Zeng and Q. Liu, “An Intelligent Fuzzy Method for MPPT of Photovoltaic Arrays,” Computational Intelligence and Design, ISCID '09. Second International Symposium on., vol. 2, pp. 356-359, 2009.
    [27] N. Khaehintung, K. Pramotung, and P. Sirisuk, “RISC Microcontroller Built-In Fuzzy Logic Controller for Maximum Power Point Tracking in Solar-Powered for Battery Charger,” TENCON IEEE Region 10 Conf., pp. 637-640, 2004.
    [28] C. Zhang and D. Zhao, “MPPT with Asymmetric Fuzzy Control for Photovoltaic System,” Industrial Electronics and Applications, ICIEA IEEE Conf., pp. 2180-2183, 2009.
    [29] N. Patcharaprakiti and S. Premrudeepreechacharn, “Maximum Power Point Tracking Using Adaptive Fuzzy Logic Control for Grid connected Photovoltaic System”, PESW2002, vol. 1, pp. 372-377, 2002.
    [30] C. Y. Won, D. H. Kim, et al, “A New Maximum Power Point Tracker of Photovoltaic Arrays Using Fuzzy Controller”, PESC’1994 Record, pp. 396-403, 1994.
    [31] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622–2628, Jul. 2008.
    [32] A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. Enjeti, “High Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic Based Microgrids,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1010–1021, Apr.2011.
    [33] Q. Mei, M. Shan, L. Liu, and J. M. Guerrero, “A Novel Improved Variable Step-Size Incremental-Resistance MPPT Method for PV Systems,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2427–2434, Jun. 2011.
    [34] N. Mohan, T. M. Undeland, and W. Robbins, “Power Electronics Converters Application and Design,” John Wiley & Sons, Inc., 3rd Edition, 2003.
    [35] A. Pressman, K. Billings, and T. Morey, “Switching Power Supply Design,” The McGraw-Hill International Enterprises, Inc., 3rd Edition, 2009.
    [36] M. H. Rashid “Power Electronics: Circuits, Devices and Applications,” Pearson Education Inc., 3rd Edition, 2004.
    [37] 梁適安,「交換式電源供給器之理論與實務設計」,初版八刷,
    全華圖書,民國九十五年十月。
    [38] EPARC,「電力電子學綜論」,第二版,全華圖書,2011年 6月。
    [39] R. W. Erickson and D. Maksimovic, “Fundamentals of Power Electronics,” Kluwer Academic Publishers, 2rd Edition, 2000.
    [40] 廖瑋星,「教育用數位切換電源實習模組之開發與實現」,國立台
    灣科技大學電機工程所博士論文,民國一百零一年七月。
    [41] 林真真、鄒幼涵,「迴歸分析」,第二版,華泰書局,民國八十二年七月。
    [42] 陳耀茂,「迴歸分析導論」,初版,全華圖書,民國八十三年十二月。
    [43] 高橋信,「世界第一簡單統計學迴歸分析篇」,初版,世茂出版,2010年09月。
    [44] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1198–1208, May 2009.
    [45] D. Sera, R. Teodorescu, J. Hantschel, and M. Knoll, “Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2629–2637, Jul. 2008.
    [46] Powercom Co., Ltd, Available: http://www.powercom.com.tw
    [47] AMETEK Inc., Available: http://www.ametekpower.com

    無法下載圖示 全文公開日期 2018/01/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE