簡易檢索 / 詳目顯示

研究生: 邱絢揚
HSUAN-YANG CHIU
論文名稱: 二氧化鈦奈米柱/奈米粒子混合型太陽光電極之研究
The study of TiO2 nanorods/nanoparticles hybrid composite photoanode
指導教授: 陳良益
Liang-Yih Chen
口試委員: 李玉郎
none
曾堯宣
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 133
中文關鍵詞: 二氧化鈦奈米柱量子點量子點敏化型太陽能電池
外文關鍵詞: Titanium dioxide, nanorods, quantum dots, quantum dots sensitized solar cell
相關次數: 點閱:267下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是進行太陽光電極的探討。在結構上,主要是以不同比例二氧化鈦奈米柱與奈米粒子混合構成。而奈米柱的製備則是以水熱法進行,並經過700oC退火處理2小時後,得到銳鈦礦相之二氧化鈦奈米柱。前期利用N3染料對不同結構以及四氯化鈦溶液處理時間的太陽能光電極進行敏化,並利用氫氧化鈉溶液將染料洗出,進行光陽極吸附量之比較,以找出較佳的光陽極製作條件為奈米柱與奈米粒子混合比為8:2,40mM四氯化鈦溶液在60oC處理時間為60分鐘下,光電轉換效率與效率值分別為81%與3.26%。再進行CdSeS量子點敏化光陽極的研究。其中CdSeS量子點敏化光陽極是以3-巰基丙酸或11-巰基十一酸進行二氧化鈦光陽極表面改質,使具有雙官能基的表面活性劑羧基接上二氧化鈦表面,再利用另一端的硫醇鍵鍵結於CdSeS量子點的表面,並在研究上以紫外光吸收光譜、螢光光譜、載子生命週期等量測進行量子點吸附於二氧化鈦光陽極前後的比較,另外,由伏安循環法所得到CdSeS量子點與此二雙官能基間的能階關係中推測螢光光譜與載子生命週期的衰退是由於量子點的電洞傳導至雙官能基上而造成的。最後再組合成太陽能電池進行光電轉換效率與效率曲線的電性量測。


    In this study, hydrothermal method was employed to grow 1-D titanate nanorods, which is annealed at 700oC for 2 hours to transfer 1-D titanate to anatase titanium dioxide (TiO2) nanorods. Difference TiO2 photoanodes were make by mixing TiO2 nanorods and P25 particles and different TiCl4(aq) treated time. In order to find out the optimum mixture condition of TiO2 photoanode, different kinds of TiO2 photoanodes were sensitized with N3 dye. The absorbed amount of N3 dye was analyzed by UV-visible absorption spectroscopy. Based on the optimum condition of TiO2 photoanode, quantum dots sensitized photoanode was studied by using home-made CdSeS quantum dots (QDs).
    In this study, two different kinds of linker, 3-mercaptoproponic acid (MPA) and 11-mercaptoundecanoic acid (MUA), were used to anchor CdSeS QDs on the surface of TiO2 photoanode. The properties of CdSeS QDs sensitized photoanode were characterized by absorption spectroscopy, photoluminescence and lifetime analysis, the band gap structure of CdSeS and MPA or MUA were decided by cyclic voltammetry (CV), and the cell performances were characterized by incident-photocurrent efficiency (IPCE) and current-voltage (I-V) measurement.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 理論基礎與文獻回顧 4 2-1 二氧化鈦的基本性質與應用 4 2-1-1 二氧化鈦的基本性質 4 2-1-2 二氧化鈦的應用 6 2-2 成長二氧化鈦奈米柱的方法 9 2-3 一維二氧化鈦奈米材料的成長機制 12 2-4 敏化太陽能電池 17 2-4-1 敏化鈦陽能電池發展現況 17 2-4-2 染料敏化鈦陽能電池基本原理 18 2-4-3 量子點敏化太陽能電池 21 2-5 量子點敏化鈦陽能電池之載子生命週期研究 26 第三章 實驗方法與步驟 29 3-1 實驗流程圖 29 3-2 實驗藥品與設備儀器 30 3-2-1 藥品/耗材名稱 30 3-2-2 實驗設備 35 3-2-3 分析儀器 35 3-3 實驗步驟 45 3-3-1 基板清洗 45 3-3-2 二氧化鈦奈米顆粒的製備 45 3-3-3 二氧化鈦緻密層(Layer A)的製備 46 3-3-4 二氧化鈦奈米柱的製備 46 3-3-5 二氧化鈦奈米柱/顆粒混合層(Layer B)的製備 47 3-3-6 以四氯化鈦進行二氧化鈦奈米柱/顆粒混合層(Layer B) 修飾 47 3-3-7 N3染料於二氧化鈦奈米柱/顆粒混合層(Layer B)的吸 附量量測 47 3-3-8 量子點之製備方式 48 3-3-9 以量子點修飾二氧化鈦奈米柱/顆粒混合層(Layer B) 49 3-3-10 電池組裝 49 第四章 結果與討論 50 4-1 Layer A的製備與分析 50 4-1-1 製備Layer A之二氧化鈦奈米顆粒形態分析 50 4-1-2 Layer A之表面形態與穿透分析 53 4-2二氧化鈦奈米柱的製備與分析 56 4-2-1 二氧化鈦奈米柱的形態與結構分析 56 4-2-2 退火處理對二氧化鈦奈米柱之結構影響 60 4-3二氧化鈦P25/奈米柱混合光陽極對N3染料吸附量分析 66 4-3-1 不同比例二氧化鈦P25/奈米柱對N3染料吸附量分析 66 4-3-2 以四氯化鈦溶液處理二氧化鈦P25/奈米柱對N3染料 吸附量分析 75 4-4 以Raman光譜進行N3染料於二氧化鈦之分析 80 4-5 不同工作電極吸附N3染料之光電性質分析 82 4-6 量子點吸附於二氧化鈦P25/奈米柱上的結果分析 85 4-6-1 CdSeS量子點吸附於二氧化鈦上之光譜分析 85 4-6-2 CdSeS量子點吸附於二氧化鈦上之光電分析 95 4-6-3 穿透式電子顯微鏡分析CdSeS量子點吸附於二氧化 鈦 98 4-6-4 以伏安循環法進行ligand的能階量測 101 第五章 結論 104 第六章 參考文獻 107

    [1] Powering the planet, M. Grätzel, Nature, 403, 363 (2000)
    [2] Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire compo sites, B. Tan, Y. Wu, J. Phys. Chem. B, 110, 15932 (2006)
    [3] Structural and photoelectrochemical characteristics of nanocrystalline Zn O electrode with Eosin-Y, W. J. Lee, A. Wakahara, A. Yoshida, Ceram. Int. 32, 495 (2006)
    [4] The application of a low-bandgap conjugated oligomer for the sensitizati on of SnO2 and TiO2, J. E. Kroezo, Thin Solod Films, 451, 54 (2003)
    [5] Sol-gel niobium pentoxide:Apromising material for electrochromic coa tings, batteries, nanocrystalline solar cells and catalysis, M. A. Aegerter, Sol. Energy Mater. Sol. Cell, 68, 401 (2001)
    [6] Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): Performance improvement during long-time irradiation, M. Lira-Cantu, F. C. Krebs, Sol Energy Mater. Sol. Cell, 90, 2076 (2006)
    [7] Phase-pure TiO2 nanoparticles : anatase, brookite and rutile, D. Reyes- Coronado, G. Rodringuez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. D. Coss, G. Oskam, Nanotechnology, 19, 145605 (2008)
    [8] 熊家林, 貢長生, 張克立, 無機精細化學品的製備和應用, 化學工業出版社(1995)
    [9] 申泮文, 車雲霞, 無機化學叢書, 科學出版社 (1998)
    [10] Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, X. Chen, S. S. Mao, Chem. Rev, 107, 2981 (2007)
    [11]余樹楨, 晶體之結構與性質, 渤海唐文化事業有限公司 (1987)
    [12]Electrochemical photolysis of water at a semiconductor electrode, A. Fujishima, K. Honda, Nature, 238, 37 (1972)
    [13] http://www.shs.edu.tw/works/essay/2007/10/2007102310240180.pdf
    [14] http://www.photocatalyst.co.jp/toha/toha.htm
    [15] 王志光, 工業材料雜誌, 201 (2002)
    [16] Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio
    frequency hybrid plasma reactor, Y. H. Lee, K. K. Chan, and M. J. Brady, J. Vac. Sci. & Technol. A, 13, 596 (1995).
    [17] Characterization of a nanosized TiO2 gas s, M. Ferroni, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, G. Sberveglieri, Nanostructured Mate. 7, 709 (1996)
    [18] Improvement of the oxygen gas sensitivity in doped TiO2 thick films R. K. Sharma, M. C. Bhatnagar, Sens. Actuators B, 56, 215 (1999)
    [19] Effects of thermally induced anatase-to-rutile phase transition in MOC VD-grown TiO2 films on structural and optical properties, D. J. Won, C. H. Wang, H. K. Jang, D. J. Choi, Appl. Phys. A, 73, 595 (2001)
    [20] CO sensitivity of the PtOySnO2 and PdOySnO2 layer structures: Kelvinpr obe and XPS analysis, G. Kiss, V. K. Josepovits, K. Kovacs, B. Ostrick, M. Fleischer, H. Meixner, F. Reti, Thin Solid Films, 436, 115 (2003)
    [21] Helical microtubules of graohitic carbon, S. Iijima , Nature, 354, 56 (1991)
    [22] The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes, D. V. Bavykin, J. M. Friedrich,and F. C. Walsh, Adv. Mater. 18, 2807 (2006)
    [23] Highyl regular anatase nanotubule arrays fabricated in porous anodic tem plates, A. Michailowski, D. Al-Mawlawi, G. S. Cheng, M. Moskovits, Chem. Phys. Lett. 349, 1 (2001)
    [24] Synthesis of single-crystalline TiO2 nanotubes, S. M. Liu, L. M. Gan, L. H. Liu, W. D. Zhang, H. C. Zeng, Chem. Mater. 14, 1391 (2002)
    [25] Synthesis and Characterization of Titania Nanostructures on Glass by Al Anodization and Sol-Gel Process, S. Z. Chu, K. Wada, S. Inoue, S. I. Todoroki, Chem. Mater. 14, 266 (2002)
    [26] A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination, G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, C. A. Grimes, J. Mater. Res. 19, 628 (2004)
    [27] Enhanced photocleavage of water using titania nanotube arrays, G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 5, 191 (2005)
    [28] Titania nanotubes prepared by chemical processing, T. Kasuga, M. Hiramatsu. A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307 (1999)
    [29] Hydrothermal treatment duration effect on the transformation of titanate nanotubes into nanoribbons, A. Elsanousi, E. M. Elssfah, J. Zhang, J. Lin, H. S. Song, and C. Tang, J. Phys. Chem. C, 111, 14353 (2007)
    [30] The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubesD. V. Bavykin, V. N. Parmon, A. A. Lapkina and F. C. Walsh, J. Mater. Chem. 14, 3370 (2004)
    [31] Solvent-controlled synthesis of TiO2 1D nanostructures : Growth mechanismand characterization, K. Das, S. K. Panda, S. Chaudhuri, J. Crystal Growth, 310, 3792 (2008)
    [32] Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications, D. V. Bavykin, J. M. Friedrich, F. C. Walsh, Adv. Mater. 18, 2807 (2006)
    [33] Formation mechanism of H2Ti3O7 nanotubes, S. Zhang, L. M. Peng, Q. Chen, G. H. Du, G. Dawson, and W. Z. Zhou, Phys. Rev. Let. 91, 256103 (2003)
    [34] Dye sensitized zinc oxide:aqueous electrolyte:platinum photocell, H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, Nature, 261, 402 (1976)
    [35] A low-coat, high-efficiency solar cell bases on dye-sensitized colloidal TiO2 film, B. O’Regan, M. Grätzel, Nature, 353, 737 (1991)
    [36] Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, P. Pchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, J. Am. Chem. Soc. 123, 1613 (2001)
    [37] Combined experimental and DFT-TDDFT computational study of photo electrochemical cell Ruthenium sensitizers, M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grtzel, J. Am. Chem. Soc. 127, 16835 (2005)
    [38] CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full- Sun intensity, H. J. Lee, J. H. Yum, H. C. Leventis, S M. Zakeeruddin, S. A. Haque, P.Chen, S. I. Seok, M. Grätzel, and M. K. Nazeeruddin, J. Phys. Chem. C, 112, 11600 (2008)
    [39] Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications, T. Lo´pez-Luke, A. Wolcott, L. Xu, S. Chen,Z. Wen, J. Li, E. D. La Rosa, and J. Z. Zhang, J. Phys. Chem. C, 112, 1282 (2008)
    [40] Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films, I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006)
    [41] Quantum dot solar cells. Semiconductor nanocrystals as light harvesters, P. V. Kamat, J. Phys. Chem. C, 112, 18737 (2008)
    [42] Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells, L. M. Peter, N. W. Duffy, R. L. Wang, K. G. U. Wijayantha, J. Electroanalytical Chem. 524, 127 (2002)
    [43] Photoelectrochemical cells, M. Grätzel, Nature, 414, 338 (2001)
    [44] Improved Performance in Dye-Sensitized Solar Cells Employing TiO2 Photoelectrodes Coated with Metal Hydroxides, J. H. Yum, S. Nakade, D. Y. Kim, and S. Yanagida , J. Phys. Chem. B, 110, 3215 (2006)
    [45] High-efficiency dye-sensitized solar cell based on a nitrogen-doped nano structured titania electrode, T. Ma, M. Akiyama, E. Abe, and I. Imai, Nano Lett. 12, 2543 (2005)
    [46] Enhanced visible-light absorption from PdO nanoparticles in nitrogen- doped titanium oxide thin films, Q. Li, W. Liang, J. K. Shang, Appl. Phys. Lett. 90, 63109 (2007)
    [47] Layer-by-layer Au nanoparticles as a Schottky barrier in a water-based dye-sensitized solar cell, Y. H. Su, W. H. Lai, L. G. Teoh, M. H. Hon, J. L. Huang, Appl. Phys. A, 88, 173 (2007)
    [48] Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells, S.J. Roh, R. S. Mane, S. K. Min, W. J. Lee, Appl. Phys. Lett. 89, 253512 (2006)
    [49] Nanocrystalline anatase TiO2 derived from a titanate-directed route, P. T. Hsiao, K. P. Wang, C. W. Cheng, H. Teng, J. Photochem. and Photobio. A Chem. 11, 013 (2006)
    [50] Growth of Submicrometer-Scale Rectangular Parallelepiped Rutile TiO2 Films in Aqueous TiCl3 Solutions under Hydrothermal Conditions, E. Hosono, S. Fujihara, K. Kakiuchi, H. Lmai, J. Am. Chem. Soc. 126, 7790 (2004)
    [51] Titanium dioxide films for photovoltaic cells derived from a sol–gel process, Y.X. Li, J. Hagen, W. Schaffrath, P. Otschik, D. Haarer, Sol Energy Mater. Sol. Cell, 56, 167 (1999)
    [52] Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells, D. Zhang, T. Yoshida, K. Furuta, H. Minoura, J. Photochem. & Photobio. A Chem. 164, 159 (2004)
    [53] Low-temperature preparation of photocatalytic TiO2 thin films from anatase sols, Y. Hu, C. Yuan, J. Crystal Growth, 274, 563 (2005)
    [54] Portable, parallel grid dye-sensitized solar cell module prepared by scre en printing, E. Ramasamy, W. J. Lee, D. Y. Lee, J.S. Song, J. Power Sources, 165, 446 (2007)
    [55] Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett. 6, 215 (2006)
    [56] Preparation of TiO2 thin film by liquid sprayed mist CVD method, B.H. Kim, J. Y. Lee, Y. H. Dhoa, M. Higuchi, N. Mizutani, Mater. Science and Engineering B, 107, 289 (2004)
    [57] Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, X. Fang, T. Ma , G. Guan, M. Akiyama, T. Kida, E. Abe, J. Electroanalytical Chemistry, 570, 257 (2004)
    [58] Quantum dot solar cells, A. J. Nozik, Physica E, 14, 115 (2002)
    [59] Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications, Y. J. Shen, Y. L. Lee, Nanotechnology, 19, 45602 (2008)
    [60] Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells, C. H. Chang, Y. L. Lee, Appl. Phys. Lett. 91, 053503 (2007)
    [61] Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe−TiO2 architecture, A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008)
    [62] Enhancing photoluminescence quenching and photoelectric properties of CdSe quantum dots with hole accepting ligands, I. S. Liu, H. H. Lo, C. T. Chien, Y. Y. Lin, C. W. Chen, Y. F. Chen, W. F. Su and S. C. Liou, J. Mater. Chem. 18, 675 (2008)
    [63] University of Cambridge Raman Spectroscopy, http://www. msm. cam.ac. uk /doitpoms/tlplib/ raman/printall.php
    [64] Vectorial Electron 1n)ection into Transparent SemiconductorMembranes and Electric Field Effects on the Dynamics of Light-Induced Charge Separation, B. O. Regan, J. Moser, M. Anderson, M. Grätzel, J . Phys. Chem. 94, 8720 (1990)
    [65] Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells, N. G. Park, J. van de Lagemaat, A. J. Frank, J. Phys. Chem. B, 104, 8989 (2000)
    [66] Dye-sensitized solar cells, M. Grätzel, J. Photochemistry and Photo biology C : Photochemistry Reviews, 4, 145(2003)
    [67] Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV−Vis, Raman, and FTIR spectroscopies, C. P. Len, L. Kador, B. Peng, M. Thelakkat, J. Phys. Chem. B, 110, 8723 (2006)

    QR CODE