簡易檢索 / 詳目顯示

研究生: 楊普安
Yang-Pu-Ann
論文名稱: 探討以微波合成法製備量子點敏化太陽能電池
The Study of Quantum Dot Sensitized Solar Cell by Microwave Chemical Bath Deposition
指導教授: 陳良益
Liang-Yih Chen
口試委員: 吳季珍
Jih-Jen Wu
陳貞夙
Jen-Sue Chen
劉豫川
Yu-Chuan Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 量子點微波合成法太陽能電池
外文關鍵詞: Quantum dots, Solar Cells, Microwave
相關次數: 點閱:343下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子點敏化太陽能電池元件的製備方法有許多種。在本研究中主要探討使用微波合成技術來進行硒化鎘量子點的合成並被覆二氧化鈦奈米粒子光陽極表面,藉此進行太陽能電池的研究。讓光陽極直接浸泡在反應的前驅物溶液中,藉由微波合成法的優點,快速提供分子所需動能,克服成長所需之活化能特性,加速反應進行合成,使量子點有效均勻被覆於光陽極上,並避免頂部堵塞的問題。
    在此研究中選用二氧化鈦奈米粒子構成光陽極,由於二氧化鈦奈米粒子具有較高的比表面積,因此可以沉積較多量子點。首先,探討反應時間對元件效率的影響。經實驗結果可知:每5分鐘更新反應溶液進行2次反應,具有較佳的效率表現,可達1.07 %。此外,結合連續離子式吸附反應法被覆上不同層數的硫化鎘和硫化鋅,其效率值達1.78 %。再藉由電化學阻抗頻譜分析法,配合適當的等效電路模型,可模擬分析電極的電荷傳遞機制,探討其效率提升的可能機制。
    而在對電極的使用上,以合成硫化物Co3S4進行對電極的製備。藉由量測電荷轉移阻值的分析可得知:Co3S4的對電極的電荷轉移阻值低於白金近乎20倍。將此對電極應用於量子點太陽能電池,因此使效率破2.72%。除此之外,在結構層上添加二氧化鈦微米球做散射層,光電轉換效率進而提升至2.92 %


    There are many kinds of methods to fabricate quantum dots sensitized solar cells (QDSSCs). In this study, microwave reactor was employed to synthesize cadmium selenide (CdSe) quantum dots directly on the surfaces of titanium dioxide nanoparticles (TiO2-NPs) photoanode for the study of solar cells. In the microwave method, the photoanode can immerse into the precursor solution directly and control the decoration of quantum dots by immersion time. Due to provide the necessary energy immediately by microwave irradiation, quantum sots can decorate on the surfaces of photoanode rapidly and avoid the agglomeration of quantum dots on top of photoanodes.
    In this work, TiO2-NPs were used as photoanodes due to their high specific surface areas. Firstly, we discuss the influence of reaction time on the performance of QDSSCs. From results, we can find the conversion efficiency of QDSSCs can arrive 1.02 % when the precursor solution was refreshed twice and each time was 5 min. In addition, the conversion efficiency can arrive 1.68 % when different layers of cadmium sulfide and zinc sulfide were decorated on the surfaces of photoanodes. The carrier transport properties of these types of QDSSCs can be resolved by using electrochemical impedance spectroscopy technique with suitable equivalent circuit model.
    As for the counter electrode, we also prepared Co3S4 electrodes to replace Pt electrodes in our QDSSCs. The performance of Co3S4 electrodes can be evaluated by measuring charge transport resistance. From measurement, we can find the charge transfer resistance of Co3S4 has improved around 20 times compared with Pt counter electrode. The efficiency of QDSSCs can arrive 2.72 %.Furthermore,we also add TiO2-MS scattering layer on photoandoes. The efficiency of QDSSCs can arrive 2.92%

    1-1 前言...................................................................1 1-2 研究動機與目的...............................................3 第二章、理論基礎與文獻回顧.......................................4 2-1 二氧化鈦基本性質...........................................4 2-2 量子點敏化太陽能電池之結構組成與原理...6 2-2-1量子點敏化太陽能電池之結構組成....................6 2-2-2量子點敏化太陽能電池之工作原理..................10 2-3 量子點敏化材料............................................12 2-3-1量子侷限效應.....................................................12 2-3-2衝擊離子化效應與歐傑再結合效應.................13 2-3-3量子點吸收層製備技術......................14 2-4 交流阻抗分析原理......................19 第三章、實驗方法與步驟.........................23 3-1 實驗流程圖............................23 3-2 實驗藥品與設備儀器....................23 3-2-1 藥品/耗材名稱.........................23 3-2-2 實驗設備..............................27 3-2-3 分析儀器..............................28 3-3 實驗步驟..............................32 3-3-1 基板清洗..............................32 3-3-2 二氧化鈦阻隔層製備....................32 3-3-3 二氧化鈦膠體溶液製備..................33 3-3-4 四氯化態進行光陽極結構修飾............33 3-3-5 二氧化鈦微米球製備....................34 3-3-6 製備硫化鈷對電極......................34 3-3-7 N719染料於化鈦光陽極的吸附製備...........34 3-3-8微波水熱法組裝CdSe........................35 3-3-9以連續離子吸附反應組裝CdS.................35 3-3-10以連續離子吸附反應組裝ZnS................36 3-3-11以熱注入法製備CdSe0.3S0.7量子點..........36 3-3-12電池組裝.................................36 第四章、結果與討論.............................38 4-1 二氧化鈦薄膜製備與分析................38 4-1-1 二氧化鈦阻隔層表面型態與結構分析......38 4-1-2 二氧化鈦薄膜分析......................39 4-2 量子點沉積在二氧化鈦薄膜特性分析......42 4-2-1 浸泡時間的分析........................42 4-2-2 微波功率的分析........................45 4-2-3 微波反應時間的探討....................47 4-3 量子點敏化太陽能電池效能特性分析......51 4-3-1 染料敏化太陽能電池的測量..............51 4-3-2 反應時間對電池效能分析................54 4-3-3 結合連續離子層吸附反應進行量子點被覆..61 4-3-4不同ZnS層數下量子點電池效能分析...........66 4-3-5不同基板下量子點電池效能分析..............70 4-3-6不同製作方式量子點太陽能電池的比較........74 4-4 對電極在量子點敏化太陽能電池的效應....78 4-4-1對電極阻抗測試.................................................78 4-4-2對電極應用於量子點太陽能電池..............81 4-4-3改變厚度之電池效能分析....................85 4-4-4探討添加二氧化鈦微米球散射層/微米球型結構層之電池效能分析...........................................89 第五章、結論...................................95 第六章、參考文獻...............................96

    1. 王革華,能源與永續發展, 新文京開發出版社(2007).
    2. 沈輝,曾祖勤,太陽能光電技術, 五南出版社(2008) .
    3. B. O'regan and M. Gratzel, Nature, 353 (6346), 737 (1991).
    4. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Science, 334 (6056), 629 (2011).
    5. Shang-Di Mo and W. Y. Ching, Physical Review B, 51 (19), 13023 (1995).
    6. D. Liu and P.V. Kamat, The Journal of Physical Chemistry, 97 (41), 10769 (1993).
    7. Pingrong Yu, Kai Zhu, Andrew G. Norman, Suzanne Ferrere, Arthur J. Frank, and Arthur J. Nozik, The Journal of Physical Chemistry B, 110 (50), 25451 (2006).
    8. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, and L.M. Peng, Journal of the American Chemical Society 130 (4), 1124 (2008).
    9. L.J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, Applied Physics Letters, 91 (2), 023116 (2007).
    10. H.J. Lee, J.H. Yum, H.C. Leventis, S.M. Zakeeruddin, S.A. Haque, P. Chen, S.I. Seok, M. Grätzel, and M.K. Nazeeruddin, The Journal of Physical Chemistry C, 112 (30), 11600 (2008).
    11. G.Y. Lan, Z. Yang, Y.W. Lin, Z.H. Lin, H.Y. Liao, and H.T. Chang, J. Mater. Chem. 19, (16), 2349 (2009).
    12. J. Chen, JL Song, XW Sun, WQ Deng, CY Jiang, W. Lei, JH Huang, and RS Liu, Applied Physics Letters 94, 153115 (2009).
    13. D. Chen, F. Huang, Y.B. Cheng, and R.A. Caruso, Advanced Materials, 21 (21), 2206 (2009).
    14. E. Enache-Pommer, J.E. Boercker, and E.S. Aydil, Applied Physics Letters, 91 (12), 123116 (2007).
    15. M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, and C.A. Grimes, Journal of Physics D: Applied Physics, 39, 2498 (2006).
    16. A. Moller and E. Diemann, Advances in Inorganic Chemistry, 31, 89 (1987).
    17. Zusing Yang, Chia-Ying Chen, Prathik Roy, and Huan-Tsung Chang, Chemical Communications, 47 (34), 9561 (2011).
    18. Y.L. Lee and C.H. Chang, Journal of Power Sources, 185 (1), 584 (2008).
    19. Zusing Yang, Chia-Ying Chen, Chi-Wei Liu, and Huan-Tsung Chang, Chemical Communications, 46 (30), 5485 (2010).
    20. I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. SHEN, T. Toyoda, and J. Bisquert, Accounts of Chemical Research, 42 (11), 1848 (2009).
    21. V. González-Pedro, X. Xu, I. Mora-Seró, and J. Bisquert, ACS nano (2010).
    22. 牟季美,張立德,奈米材料和奈米結構, 滄海書局(2002).
    23. A.J. Nozik, Physica E, 14 (1), 115 (2002).
    24. Sven Rühle, Menny Shalom, and Arie Zaban, ChemPhysChem 11 (11), 2290 (2010).
    25. A.J. Nozik, Inorganic chemistry 44 (20), 6893 (2005).
    26. I. Robel, V. Subramanian, M. Kuno, and P.V. Kamat, Journal of the American Chemical Society, 128 (7), 2385 (2006).
    27. X.F. Gao, H.B. Li, W.T. Sun, Q. Chen, F.Q. Tang, and L.M. Peng, The Journal of Physical Chemistry C, 113 (18), 7531 (2009).
    28. O. Niitsoo, S.K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, and G. Hodes, Journal of Photochemistry and Photobiology A: Chemistry, 181 (2), 306 (2006).
    29. Q. Shen, J. Kobayashi, L.J. Diguna, and T. Toyoda, Journal of Applied Physics, 103, 084304 (2008).
    30. Shuli Cheng, Wuyou Fu, Haibin Yang, Lina Zhang, Jinwen Ma, Hui Zhao, Meiling Sun, and Lihua Yang, The Journal of Physical Chemistry C, 116 (3), 2615 (2012).
    31. Hyo Joong Lee, Jiwon Bang, Juwon Park, Sungjee Kim, and Su-Moon Park, Chemistry of Materials, 22 (19), 5636 (2010).
    32. Guang Zhu, Likun Pan, Tao Xu, and Zhuo Sun, ACS Applied Materials & Interfaces, 3 (5), 1472 (2011).
    33. Guang Zhu, Likun Pan, Tao Xu, and Zhuo Sun, ACS Applied Materials & Interfaces, 3 (8), 3146 (2011).
    34. Guang Zhu, Likun Pan, Tao Xu, Qingfei Zhao, Bin Lu, and Zhuo Sun, Nanoscale, 3 (5), 2188 (2011).
    35. P.T. Hsiao, Y.L. Tung, and H. Teng, The Journal of Physical Chemistry C, 114 (14), 6762 (2010).
    36. Francisco Fabregat-Santiago, Juan Bisquert, Germà Garcia-Belmonte, Gerrit Boschloo, and Anders Hagfeldt, Solar Energy Materials and Solar Cells, 87 (1-4), 117 (2005).
    37. A.B.F. Martinson, M.S. Góes, F. Fabregat-Santiago, J. Bisquert, M.J. Pellin, and J.T. Hupp, The Journal of Physical Chemistry A, 113 (16), 4015 (2009).
    38. 陳映竹,奈米複合類固態染料敏化太陽能電池,國立中央大學化學系碩士論文(2009).
    39. C.C. Wang and J.Y. Ying, Chemistry of Materials, 11 (11), 3113 (1999).
    40. M. Wang, A.M. Anghel, B. Marsan, N.L. Cevey Ha, N. Pootrakulchote, S.M. Zakeeruddin, and M. Grätzel, Journal of the American Chemical Society, 131 (44), 15976 (2009).
    41. Y.L. Lee and Y.S. Lo, Advanced Functional Materials, 19 (4), 604 (2009).
    42. Ching-Fa Chi, Hsun-Wei Cho, Hsisheng Teng, Cho-Ying Chuang, Yu-Ming Chang, Yao-Jane Hsu, and Yuh-Lang Lee, Applied Physics Letters, 98 (1), 012101 (2011).
    43. S. Cheng, W. Fu, H. Yang, L. Zhang, J. Ma, H. Zhao, M. Sun, and L. Yang, The Journal of Physical Chemistry C (2012).
    44. S. Yang, C. Huang, J. Zhai, Z. Wang, and L. Jiang, J. Mater. Chem. 12 (5), 1459 (2002).
    45. G. Hodes, J. Manassen, and D. Cahen, Journal of the Electrochemical Society, 127, 544 (1980).
    46. T. Shu, Z. Zhou, H. Wang, G. Liu, P. Xiang, Y. Rong, H. Han, and Y. Zhao, Journal of Materials Chemistry, (2012).
    47. S. Emin, M. Yanagida, W. Peng, and L. Han, Solar Energy Materials and Solar Cells, 101, 5 (2012).
    48. J.Y. Lin, J.H. Liao, and T.C. Wei, Electrochemical and Solid-State Letters 14 (4), D41 (2011).
    49. S.Q. Fan, B. Fang, J.H. Kim, B. Jeong, C. Kim, J.S. Yu, and J. Ko, Langmuir 26 (16), 13644 (2010).
    50. X. Xin, M. He, W. Han, J. Jung, and Z. Lin, Angewandte Chemie International Edition 50 (49), 11739 (2011).
    51. 戴瑋瑩,二氧化鈦奈米粒子光陽極於太陽能電池之應用,國立台灣科技大學化工系碩士論文(2010).

    無法下載圖示 全文公開日期 2014/12/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE