簡易檢索 / 詳目顯示

研究生: 徐峻彥
Chun-Yen Hsu
論文名稱: 適用於太陽能發電系統之PI調變式擾動觀察最大功率追蹤技術
An Adaptive PI Controlled Perturb and Observe Maximum Power Point Tracking Technique for Photovoltaic Generation Systems
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Zhong Wang
邱煌仁
Huang-Ren Qiu
鄧人豪
Ren-Hao Deng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 太陽能發電系統太陽能最大功率追蹤技術擾動觀察最大功率追蹤演算法
外文關鍵詞: photovoltaic generation system, maximum power point tracking technique, perturb and observe maximum power point tracking algorithm
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能是越來越受歡迎的再生能源發電技術,因為其安裝成本逐漸降低且對環境友善。而當太陽能發電系統安裝在照度變化大的地區時,為了將能源做最大限度的使用,讓太陽能系統工作於最大功率點,太陽能最大功率追蹤便是關鍵技術。
    本文實現了PI調變式擾動觀察最大功率追蹤演算法,目的在解決傳統式固定擾動觀察法於追蹤速度與頂峰震盪的權衡問題。與傳統的固定步階式擾動觀察法以及變動式擾動觀察法比較,PI調變式擾動觀察法的追蹤速度分別提高了58%與55.8%;與固定步階式擾動觀察法和變動式步階擾動觀察法比較,PI調變式擾動觀察法的追蹤電能損失分別減少了44.8%與37.2%。除此之外,本文亦討論調變參數– KP and KI –的變動對於系統的影響。


    The solar panel is becoming an increasingly popular form of renewable energy due to its decreasing installation costs and environmental friendliness. When the photovoltaic generation system (PGS) is installed in an area where the insolation changes rapidly, the maximum power point tracking (MPPT) technique is the key to make full use of the solar energy.
    This thesis implements the PI controlled perturb and observe (P&O) MPPT algorithm in order to solve the trade-off problem between the tracking speed and the steady state tracking accuracy of the traditional fixed-step P&O method. Compared to the traditional fixed-step P&O method and the variable step P&O method, the PI controlled P&O method can improve the tracking speed of the solar system by 58% and 55.8%, respectively. Moreover, the power loss of the solar system can be reduced by 44.8% and 37.2%, respectively. In addition, the effects of the tunable parameters – KP and KI – are also discussed in this thesis to facilitate the design of the realized PI controlled perturb and observe maximum power point tracking algorithm.

    目錄 摘要 I Abstract V 目錄 VII 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 文獻探討 2 1.4 本文實現之太陽能最大功率追蹤系統架構 3 1.5 論文大綱 4 第二章 太陽能電池介紹 5 2.1 太陽能電池簡介 5 2.2 太陽能電池原理 5 2.3 太陽能電池種類 6 2.4 太陽能電池電氣特性 7 第三章 太陽能最大功率追蹤技術 10 3.1 最大功率追蹤技術簡介 11 3.2 最大功率追蹤技術 11 3.2.1 開路電壓法 11 3.2.2 短路電流法 12 3.2.3 直接量測法 13 3.2.4 擾動觀察法 14 3.2.5 增量電導法 15 3.3 各追蹤方法比較 18 第四章 太陽能最大功率追蹤系統之硬體架構設計 19 4.1 升壓式轉換器介紹 20 4.2 升壓式轉換器之動作原理 20 4.3 升壓式轉換器電路主要元件規格設計 24 第五章 太陽能最大功率追蹤系統之韌體架構設計 28 5.1 數位訊號處理器簡介 29 5.2 數位PI控制器 31 5.2.1 PI控制原理 31 5.2.2 數位PI控制器設計 33 5.3 本文進行比較之最大功率追蹤技術簡介 33 5.3.1 固定步階式擾動觀察法 33 5.3.2 變動步階式擾動觀察法 36 5.3.3 PI調變式擾動觀察法 39 5.4 韌體主程式架構 40 第六章 實驗模擬與結果分析 42 6.1 實驗設備與環境介紹 42 6.2 太陽能最大功率追蹤系統模擬及性能評估 46 6.3 太陽能最大功率追蹤系統模擬 48 6.3.1 固定步階式擾動觀察法模擬 48 6.3.2 變動步階式擾動觀察法模擬 50 6.3.3 PI調變式擾動觀察最大功率追蹤技術模擬 52 6.4 太陽能最大功率追蹤系統實測 56 6.4.1 固定步階式擾動觀察法實測 56 6.4.2 變動步階式擾動觀察法實測 57 6.4.3 PI調變式擾動觀察法實測 58 6.4.4 實驗結果比較與分析 60 第七章 結論與未來展望 63 7.1 結論 63 7.2 未來展望 64 參考文獻 65

    [1] Renewable Energy Policy Network for the 21st Century, Available at: http://www.ren21,net/.
    [2] F. Liu, S. Duan, F. Liu, B. Liu and Y. Kang, “A Variable Step Size INC MPPT Method for PV System,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2622-2628, 2008.
    [3] A. Loukriz, M. Haddadi and S. Messalti, “Simulation and Experimental Design of a New Advanced Variable Step Size Incremental Conductance MPPT Algorithm for PV Systems, ” ISA Transactions, Vol. 62, pp. 30-38, 2015
    [4] M. Killi and S. Samanta, “Modified Perturb and Observe MPPT Algorithm for Drift Avoidance in Photovoltaic Systems,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 9, pp. 5549-5559, 2015.
    [5] C. C. Hua, Y. H. Fang and W. T. Chen, “Hybrid Maximum Power Point Tracking Method with Variable Step Size for Photovoltaic Systems,” IET Renewable Power Generation, Vol. 10, No. 2, pp. 127-132, 2016.
    [6] T. Radjai, L. Rahmani, S. Mekhilef and J. P. Gaubert, “Implementation of a Modified Incremental Conductance MPPT Algorithm with Direct Control Based on a Fuzzy Duty Cycle Change Estimator Using dSPACE,” Solar Energy, Vol. 110, pp. 325-337, 2014.
    [7] J. H. Teng, W. H. Huang, T. A. Hsu and C. Y. Wang, “Novel and Fast Maximum Power Point Tracking for Photovoltaic Generation,” IEEE Transactions on Industrial Electronics, Vol. 63, No. 8, pp. 4955-4966, 2016.
    [8] M. Uoya and H. Koizumi, “A Calculation Method of Photovoltaic Array's Operating Point for MPPT Evaluation Based on One-Dimensional Newton Raphson Method,” IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 567-575, 2015.
    [9] T. K. Soon and S. Mekhilef, “A Fast-Converging MPPT Technique for Photovoltaic System under Fast-Varying Solar Irradiation and Load Resistance,” IEEE Transactions on Industrial Informatics, vol. 11, no. 1, pp. 176-186, 2015.
    [10] L. V. Hartmann, M. A. Vitorino, M. B. d. R. Correa and A. M. N. Lima, “Combining Model-Based and Heuristic Techniques for Fast Tracking the Maximum-Power Point of Photovoltaic Systems,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2875-2885, 2013.
    [11] S. K. Kollimalla and M. K. Mishra, “A Novel Adaptive P&O MPPT Algorithm Considering Sudden Changes in the Irradiance,” IEEE Transactions on Energy Conversion, vol. 29, no. 3, pp. 602-610, 2014.
    [12] H. A. Sher, A. F. Murtaza, A. Noman, K. E. Addoweesh, K. Al-Haddad and M. Chiaberge, “A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT,” IEEE Transactions on Sustainable Energy, vol. 6, no. 4, pp. 1426-1434, 2015.
    [13] K. Sundareswaran, V. Vigneshkumar, P. Sankar, S. P. Simon, P. Srinivasa Rao Nayak and S. Palani, “Development of an Improved P&O Algorithm Assisted through a Colony of Foraging Ants for MPPT in PV System,” IEEE Transactions on Industrial Informatics, vol. 12, no. 1, pp. 187-200, 2016.
    [14] Y. Mahmoud, M. Abdelwahed and E. F. El-Saadany, “An Enhanced MPPT Method Combining Model-Based and Heuristic Techniques,” IEEE Transactions on Sustainable Energy, vol. 7, no. 2, pp. 576-585, 2016.
    [15] X. Li, H. Wen, L. Jiang, W. Xiao, Y. Du and C. Zhao, “An Improved MPPT Method for PV System with Fast-Converging Speed and Zero Oscillation,” IEEE Transactions on Industry Applications, vol. 52, no. 6, pp. 5051-5064, 2016.
    [16] R. Koad, A. F. Zobaa and A. El Shahat, “A Novel MPPT Algorithm Based on Particle Swarm Pptimisation for Photovoltaic Systems,” IEEE Transactions on Sustainable Energy, pp. 1-1, 2016.
    [17] Ahmed K.Abdelsalam, Ahmed M. Massoud, Shehab Ahmed, Prasad N. Enjeti, “ High performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrid ” IEEE Transactions on Power Electronics, pp 1010 – 1021, 2011.
    [18] 齋藤勝裕,「3小時讀通太陽能電池」,世茂出版有限公司,民國101年5月。
    [19] 劉金琨,「先進PID 控制-MATLAB 仿真」,電子工業出版社
    [20] 蔡俊嘉,「非對稱型模糊控制太陽能發電系統最大功率追蹤技術研究」國立台灣科技大學電機工程系碩士學位論文,民國102 年 1 月。
    [21] F. Vhekired, A. Mellit, S. A. Kalogirou and C.Larbes, “Intelligent Maximum Power Point Trackers for Photovoltaic Applications using FPGA Chip: A Comparative Study,”Solar Energy, Vol. 101, pp. 83-99, 2014.
    [22] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Transactions on Power Electronics, Vol. 20, No.4, pp. 963-973, 2005.
    [23] Y. C. Kuo, T. J. Liang and J. F. Chen, “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System,” IEEE Transactions on Industrial Electronics, Vol.48, No. 3, pp. 594-601, 2001.
    [24] K. Ishaque and Z. Salam, “A Review of Maximum Power Point Tracking Techniques of PV System for Uniform Insolation and Partial Shading Condition,” Renewable and Sustainable Energy Reviews, Vol. 19, pp. 475-488, 2013
    [25] R. W. Erickson and D. Maksmovic, “Fundamentals of Power Electronics,” 2nd Edition, Kluwer Academic Publishers, 2001.
    [26] 王順忠,「電力電子學」,臺灣東華書局股份有限公司,民國90年。
    [27] 梁適安,「交換式電源供給器之理論與實務設計」,全華圖書,民國93年10月。
    [28] 江炫樟,「電力電子學」第三版,全華圖書,民國94年8月。
    [29] A. I. Pressman, K. Billimgs and T. Morey, “Switching Power Supply Design,” 3 Edition, McGraw-Hill Professional, 2009.
    [30] . 郭書瑋, “應用於微電網系統之高效能雙向直流/直流轉換器,” 國立台灣科技大學電子工程系博士學位論文, 民國103年5月.
    [31] 曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,民國98 年 12 月。
    [32] Microchip Technology Inc., “dsPIC30F/33F Programmer’s Reference Manual,” Available at: http://www.microchip.com.
    [33] Microchip Technology Inc., “dsPIC33FJ64GS606, ” Available at: http://www.microchip.com
    [34] 賴文能、林國祥、高志暐,「數位信號處理」第三版,高立圖書有限公司,2007 年。
    [35] A.Al-Amoudi, L.Zhong, “Optimal Control of a Grid-Connected PV System for Maximum Power Point Tracking and Unity Power Factor” 1998 Seventh International Conference on Power Electronics and Variable Speed Drives(IEE Conf. No.456), 2002.
    [36] Mao-Lin, Chiang, Chih-Chiang Hua, Jong-Rong Lin, “Direct Power Control for Distributed PV Power System”, Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No.02TH8579), 2002.

    無法下載圖示 全文公開日期 2024/01/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE