簡易檢索 / 詳目顯示

研究生: 倪鵬濤
Peng-Tao Ni
論文名稱: 適用於太陽能發電系統之決定型杜鵑鳥搜尋最大功率追蹤法
A Deterministic Cuckoo Search Maximum Power Point Tracker for Photovoltaic Generation System
指導教授: 劉益華
Yi-Hua Liu
口試委員: 邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
王順忠
Shun-Chung Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 120
中文關鍵詞: 最大功率追蹤太陽能發電系統杜鵑鳥搜尋法擾動觀察法
外文關鍵詞: Maximum Power Point Tracking, Solar energy generation, Cuckoo Search Algorithm, Perturb and Observe method.
相關次數: 點閱:217下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出可改善太陽能發電系統最大功率追蹤能力之決定型杜鵑鳥搜尋法。杜鵑鳥搜尋法擁有快速收斂、高轉換效率及參數設計需求較少等特性,但其複雜的程式流程以及亂數產生之需求導致實現困難度提升。決定型杜鵑鳥搜尋法主要理念為捨去原杜鵑鳥搜尋法之列維飛行(Levy Flight)模式運算及簡化程式判斷,進而降低其運算及程式流程之複雜度。
    本文系統採用升壓式轉換器作為功率級電路,並搭配dsPIC33FJ16GS502數位信號控制器,實現最大功率追蹤程式控制以完成一太陽能最大功率追蹤器,並針對傳統擾動觀察法及變動步階式擾動觀察法與本文所提之方法進行實測比較分析。根據模擬及實驗結果得知,本文所提之方法的穩態追蹤精確度高達99.94%,而追蹤時間相較於傳統擾動觀察法及變動步階式擾動觀察法各可減少46.42%及11.76%的時間。此外,本文所提出之決定型杜鵑鳥搜尋法可成功解決部分遮蔭之問題,達到全域最大功率追蹤之功能。


    In this thesis, a deterministic cuckoo search (CS) method is proposed to improve the maximum power point tracking (MPPT) capability of a photovoltaic generation system. It is acknowledged that the CS method boasts advantages such as fast convergence, high efficiency and few tuning parameters. However, complicated flowchart and the requirement of random number generation make it difficult to implement CS technique in low cost microcontrollers. The main idea of the proposed method is to remove the levy flight calculation in the conventional CS method; hence, the proposed MPPT algorithm is much simpler compared to the conventional CS technique. In this thesis, the proposed deterministic CS method is realized using digital signal controller dsPIC33FJ16GS502 from Microchip corp. The constructed MPPT controller is then implemented on a boost converter and compared to the conventional perturb and observe (P&O) and variable-step P&O method. According to the simulated and experimental results, the MPPT accuracy of the proposed system is 99.94 %, and the tracking time can be improved by 46.42 % and 11.76 % comparing to conventional P&O and variable-step P&O method, respectively. In addition, the proposed deterministic CS method can also successfully handle the global maximum power point tracking problem under partial shaded conditions.

    第一章 緒論 1.1 研究背景與動機 1.2 研究目的 1.3 文獻探討 1.4 太陽能最大功率追蹤系統架構 1.5 論文大綱 第二章 太陽能電池介紹 2.1 太陽能電池簡介 2.2 太陽能電池原理 2.3 太陽能電池種類 2.4 太陽能電池電氣特性 第三章 太陽能最大功率追蹤技術 3.1 最大功率追蹤技術簡介 3.2 最大功率追蹤控制技術 3.2.1 開路電壓法 3.2.2 短路電流法 3.2.3 直接量測法 3.2.4 擾動觀察法 3.2.5 增量電導法 3.3 各追蹤方法比較 第四章 太陽能最大功率追蹤系統之硬體架構設計 4.1 升壓式轉換器介紹 4.2 升壓式轉換器之動作原理 4.3 升壓轉換器電路主要元件規格設計 第五章 太陽能最大功率追蹤系統之韌體架構設計 5.1 數位訊號處理器簡介 5.2 濾波器 5.2.1 類比濾波器 5.2.2 數位濾波器 5.2.3 有限脈衝響應濾波器 5.2.4 有限脈衝響應濾波器設計 5.3 數位PID控制器 5.3.1 PID控制原理 5.3.2數位PID控制器設計 5.4本文比較之最大功率追蹤技術簡介 5.4.1固定步階式擾動觀察法 5.4.2變動步階式控制法則 5.4.2.1 變動步階式擾動觀察法 5.4.2.2 數位PI控制擾動觀察法 5.4.2.3 自適應變動步階式增量電導法 5.4.3杜鵑鳥搜尋法則 5.4.3.1杜鵑鳥搜尋法 5.4.3.2 決定型杜鵑鳥搜尋法 5.5 韌體主程式架構 第六章 實驗模擬與結果分析 6.1實驗環境與設備介紹 6.2太陽能最大功率追蹤系統量測準則及性能評估 6.3 太陽能最大功率追蹤系統模擬 6.3.1 固定步階式擾動觀察法 6.3.2 變動步階式控制法則模擬 6.3.3 決定型杜鵑鳥搜尋法模擬 6.3.4 模擬結果比較及分析 6.4 太陽能最大功率追蹤系統實測 6.4.1 固定步階式擾動觀察法實測 6.4.2 變動步階式擾動觀察法實測 6.4.3 決定型杜鵑鳥搜尋法實測 6.4.3.1一般均勻照度實測 6.4.3.2 EN50530照度變化標準實測 6.4.3.3 部分遮蔽實測 6.4.4 實驗結果比較及分析 第七章 結論與未來展望 7.1 結論 7.2 未來展望 參考文獻

    [1] Renewable Energy Policy Network for the 21st Century, Available at: http://www.ren21,net/.
    [2] Frankfurt School Fs-Unep Collaborating Centre, Available at: http://fs-unep-centre.org/
    [3] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A Variable Step Size INC MPPT Method for PV System,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2622-2628, 2008.
    [4] Y. T. Chen, Z. H. Lai, Y. C. Jhang, and R. H. Liang, “A Single-sensor PV System Featuring an Innovative Auto-adjustment Variable Step-size MPPT Method,” Journal of the Chinese Institute of Engineers, Vol. 38, No. 7, pp. 866-877, 2015.
    [5] Y. T. Chen, Z. H. Lai, and R. H. Liang, “A Novel Auto-scaling Variable Step-size MPPT Method for a PV System,” Solar Energy, Vol. 102, pp. 247-256, 2014.
    [6] S. K. Kollimalla, and M. K. Mishra, “A Novel Adaptive P&O MPPT Algorithm Considering Sudden Change in the Irradiance,” IEEE Transactions on Energy Conversion, Vol. 29, No. 3, pp. 602-610, 2014.
    [7] E. Mamarelis, G. Petrone, and G. Spagnuolo, “A Two-step Algorithm Improving the P&O Steady State MPPT Efficiency,” Applied Energy, Vol. 113, pp. 414-421, 2014.
    [8] Y. Jiang, A. Qahouq, and T. A. Haskew, “Adaptive Step Size With Adaptive-Perturbation-Frequency Digital MPPT Controller for a Single –Sensor Photovoltaic Solar System,” IEEE Transactions on Power Electronics, Vol. 28, No.7, pp. 3195-3205, 2013.
    [9] Y. Hong, S. N. Pham, T. Yoo, K. Chae, K. H. Baek, and Y. S. Kim, “Efficient Maximum Power Point Tracking for a Distributed PV system under Rapidly Changing Environmental Conditions,” IEEE Transactions on Power Electronic, Vol. 30, No. 8, pp. 4209-4218, 2015.
    [10] T. Radjai, L. Rahmani, S. Mekhilef, and J. P. Gaubert, “Implementation of a Modified Incremental Conductance MPPT Algorithm with Direct Control Based on a Fuzzy Duty Cycle Change Estimator Using dSPACE,” Solar Energy, Vol. 110, pp. 325-337, 2014.
    [11] 林冠宇,「獨立型太陽能發電系統用準Z源換流器之設計與研製」國立台灣科技大學電機工程系碩士學位論文,民國102 年 7 月。
    [12] 齋藤勝裕,「3小時讀通太陽能電池」,世茂出版有限公司,民國101年5月。
    [13] 顧鴻濤,「太陽能電池元件導論:材料、元件、製程、系統」,全威圖書,民國98 年10 月。
    [14] 翁敏航、楊茹媛、管鴻、晁成虎,「太陽能電池:原理、元件、材料、製程與檢測技術」,東華書局,民國99 年5 月。
    [15] H. A. Sher, A. F. Murtaza, K. E. Addoweesh, and M. Chiaberge, “An Intelligent Off-line MPPT Technique for PV Applications,” IEEE Conference on System Process & Control (ICSPE), Kuala Lumpur, Malaysia, pp. 316-320, 2013.
    [16] 黃嘉偉,「適用於快速變動環境之太陽能最大功率追蹤技術研究」國立台灣科技大學電機工程系博士學位論文,民國101 年 7 月。
    [17] 蔡俊嘉,「非對稱型模糊控制太陽能發電系統最大功率追蹤技術研究」國立台灣科技大學電機工程系碩士學位論文,民國102 年 1 月。
    [18] A. M. Atallah, A. Y. Abdelaziz, and R. S. Jumaah, “Implementation of Perturb and Observe MPPT of PV System with Direct Control Method Using Buck and Buck-Boost Converters,” Emerging Trends in Electrical, Electronics & Instrumentation Engineering:An international Journal(EEIEJ), Vol. 1, No. 1, pp. 31-44, 2014.
    [19] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of Perturb and Observe Maximum Power Point Tracking Method,” IEEE Transactions on Power Electronics, Vol. 20, No.4, pp. 963-973, 2005.
    [20] Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System,” IEEE Transactions on Industrial Electronics, Vol.48, No. 3, pp. 594-601, 2001.
    [21] G. J. Yu, Y. S. Jung, J. Y. Choi, and G. S. Kim, “A Novel Two-Mode MPPT Control Algorithm Based on Comparative Study of Existing Algorithms,” Solar Energy, Vol. 76, No. 4, pp. 455-463, 2004.
    [22] 王順忠,「電力電子學」,臺灣東華書局股份有限公司,民國90年。
    [23] 梁適安,「交換式電源供給器之理論與實務設計」,全華圖書,民國93年10月。
    [24] R. W. Erickson and D. Maksmovic, “Fundamentals of Power Electronics,” 2nd Edition, Kluwer Academic Publishers, 2001.
    [25] 江炫樟,「電力電子學」第三版,全華圖書,民國94年8月。
    [26] A. I. Pressman, K. Billimgs, and T. Morey, “Switching Power Supply Design,” 3 Edition, McGraw-Hill Professional, 2009.
    [27] Microchip Technology Inc., “dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04,” Available at: http://www.microchip.com.
    [28] Microchip Technology Inc., “dsPIC30F/33F Programmer’s Reference Manual,” Available at: http://www.microchip.com.
    [29] 曾百由,「數位訊號控制器原理與應用」,宏友圖書開發股份有限公司,民國98 年 12 月。
    [30] 郭書瑋, “應用於微電網系統之高效能雙向直流/直流轉換器,” 國立台灣科技大學電子工程系博士學位論文, 民國103年5月.
    [31] A. Pandey, N. Dasgupta, and A. K. Mukerjee, “High-Performance Algorithms for Drift Avoidance and Fast Tracking in Solar MPPT System,” IEEE Transactions on Energy Conversion, Vol. 23, No. 2, pp. 681-689, 2008.
    [32] Q. Mei, M. Shan, L. Liu, and M. Guerrero, “A Novel Improved Variable Step-Size Incremental-Resistance MPPT Method for PV Systems,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 6, pp. 2427-2434, 2011.
    [33] S. K. Kollimalla, and M. K. Mishra, “Variable Perturbation Size Adaptive P&O MPPT Algorithm for Sudden Changes in Irradiance,” IEEE Transactions on Sustainable Energy, Vol. 5, No. 3, pp. 718-728, 2014.
    [34] C. C. Hua, Y. H. Fang, and W. T. Chen, ‘Hybrid Maximum Power Point Tracking Method with Variable Step Size for Photovoltaic Systems,” IET Renewable Power Generation, Vol. 10, No. 2, pp.127-132, 2016.
    [35] A. K. Abdelsalam, A. M. Massoud, S. Ahmed and P. Enjeti, “High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids,” IEEE Transactions on Power Electronics, Vol. 26, No. 4, pp. 1010–1021, 2011.
    [36] D. Brockmann, and T. Geisel, “Are Human Scanpaths Lévy Flights?,” International Conference on Artificial Neural Networks(ICANN), Vol. 1, No.473, pp. 263-268, Edinburgh, Scotland, 1999.
    [37] Y. Teuschl, B. Taborsky, and M. Taborsky, “How Do Cuckoo Find Their Hosts? The Role of Habitat Imprinting,” Animal Behaviour, Vol. 56, pp. 1425-1433, 1998.
    [38] X. S. Yang, and S. Deb, “Cuckoo Search via Lévy Flights,” Nature and Biologically Inspired Computing(NaBIC), Coimbatore, India, pp. 210-214, 2009
    [39] J. Ahmed, and Z. Salam, “A Maximum Power Point Tracking (MPPT) for PV System Using Cuckoo Search with Particle Shading Capability,” Applied Energy, Vol. 119, pp. 118-130, 2014.

    無法下載圖示 全文公開日期 2021/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2021/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE