簡易檢索 / 詳目顯示

研究生: 翁麗惠
Dewi - Ratna Wijayanti
論文名稱: 藉由掃流膜過濾程序,去除地表水中的碘酸鹽、銫,及硼
Iodate, Caesium, and Boron Removal from Surface Water by Means of Membrane Cross-flow Filtration Process
指導教授: 李篤中
Duu-jong Lee
口試委員: 劉志成
Jhy-chern Liu
Christoper George Whiteley
Christoper George Whiteley
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 101
中文關鍵詞: 掃流過濾典酸鹽逆滲透奈濾
外文關鍵詞: Cross-flow filtration, iodate, caesium, boron, reverse osmosis, nanofiltration
相關次數: 點閱:283下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

地表水因易遭受人工汙染,所以具有高含量的有機物質,因此將自來水以輸水管線配送至用戶端前須經過淨化程序。相較於自來水場與傳統淨水處理流程,薄膜過濾技術是新興之高效淨水處理技術,具較簡易得操作與控制以及較低的維護成本。廣泛應用於移除水體中膠體顆粒與微生物的逆滲透(Reverse Osmosis RO)和奈濾(Nanofiltration NF),可作為現有淨水處理系統的替代或輔助程序。
本研究利用薄膜過濾程序,比較碘、銫及硼的去除效果。研究所使用的平板式薄膜,包含三種超過濾薄膜:DK、DL (GE-OSMONICS, USA)、NF270 (Dow Chemicals, USA)及四種逆滲透薄膜:SG膜 (GE-Osmonics, USA)及UTC膜(UTC_80A、UTC_80C、UTC_80S, Toray, Japan)。超過濾薄膜材質為半芳族聚酰胺,SG膜材質為聚酰胺脂及UTC膜材質為交聯全芳香族聚酰胺。本研究以不同薄膜進行過濾含碘、銫及硼之原水,並觀察其濃度隨時間變化及過濾通量。
研究實驗結果指出,以材質為交聯全芳香族聚酰胺(UTC膜)去除銫及硼的效果最佳,材質為聚酰胺脂(SG膜)去除碘的效果為最佳。因聚酰胺脂(SG膜)為聚乙烯醇(PVA)進行酯化反應,可在選擇性層中具有較強的交聯結構,使得薄膜有較佳的物理支撐力。
部分膜表面改質在本研究中進行探討,例如:氯化、甲殼素沉積與腐植酸塗層。將聚酯酰胺膜 (DL膜) 及半芳族聚酰胺膜 (NF270膜)進行改質,其去除銫的效果可稍微提升。而將交聯全芳香族聚酰胺類的薄膜 (UTC80 及 UTC80A) 及聚酰胺脂膜(DL膜)在鹼性條件下進行改質,對於硼可有較佳的去除率。


Surface water has a high content of organic substances and is exposed to anthropogenic pollutants, thus requiring a high degree of purification before distribution. Compared to conventional water and wastewater treatment systems, membrane separation is a more compact operation that provides higher quality products, easier operational control, and lower maintenance costs. Reverse Osmosis (RO) and nanofiltration (NF), which are widely used to remove colloidal particles and microorganisms, can serve as alternative or supplementary processes to water and wastewater treatment systems.
This study compared performance on iodate, caesium, and boron removal from raw water by means of membrane filtration process. Seven types of flat-sheet membranes, consist of three nanofiltration, DK, DL (GE/Osmonics, USA) and NF270 (Dow Chemicals, USA), and four reverse osmosis membranes, SG (GE/Osmonics, USA) and UTC series membranes, UTC80, UTC80A, and UTC80S (Toray, Japan) were tested in this study. All of the nanofiltration membranes here are semi-aromatic polyamide, while the LPRO and UTC80 series are polyesteramide and cross-linked fully aromatic polyamide membranes, respectively. Permeability, feed flow rate, and the concentration of iodate, caesium, and boron were tested over time.
Cross-linked fully aromatic polyamide membrane gives the best performance in caesium and boron rejection compare to the other kind of membranes. While polyesteramide membrane shows better iodate rejection than semi-aromatic polyamide membrane. Esterification with polyvinyl alcohol (PVA) would contribute to polyesteramide formation resulting in the strongly cross-linked structure in selective layer. This will provide extra physical support together with retention.
As for reflection coefficient value, the closer to one (1), the better solute removal can be obtained by the membrane. This reflection coefficient is depending on solution pH. Means that each membrane has their optimum condition to achieve the best solute removal.
Some modification, such as chlorination, chitosanium deposition, and humic acid coating were conducted in this study. Modification towards caesium removal shows slightly increasing for piperazine-based polyamide membrane (DL and NF270) and gives higher boron removal for cross-linked fully aromatic polyamide membrane (UTC80 and UTC80A) in alkaline conditions.

ABSTRACT i 摘要 ii ACKNOWLEDGEMENT iii TABLE OF CONTENTS iv LIST OF TABLES vi LIST OF FIGURES vii CHAPTER ONE INTRODUCTION 1.1 Background 1 1.2 Research Goals 2 CHAPTER TWO LITERATURE REVIEW 2.1 Membrane Filtration 3 2.2 Osmotic Process 4 2.3 Concentration Polarization 4 2.3.1 Filtration Number 5 2.3.2 Complete Filtration Curve 6 2.4 Cake Formation 7 2.5 Chlorination Effect on Polyamide Membrane 8 2.6 Iodate Chemistry 9 2.7 Caesium Chemistry 10 2.8 Boron Chemistry 10 2.9 Irreversible Thermodynamic Model 11 CHAPTER THREE MATERIALS AND METHODS 3.1 Raw water characteristics 13 3.2 Pretreatment Procedures 13 3.2.1 Raw Water Pretreatment 13 3.2.2 Seawater Pretreatment 14 3.3 Membranes 14 3.4 Membrane Surface Modifications 16 3.4.1 Chlorination of Polyamide Membrane 17 3.4.2 Chitosanium Deposition on Polyamide Membrane 18 3.4.3 Humic Acid Coating on Polyamide Membrane 18 3.5 Experimental set-up 18 3.6 Calculations 19 3.7 Analytical methods 20 CHAPTER FOUR RESULTS AND DISCUSSION 4.1 Control Variables for Cross-flow Filtration System 21 4.2 Iodate Removal 24 4.3 Caesium Removal 26 4.4 Boron Removal 30 4.5 Seawater Desalination for Boron Removal 34 4.6 Iodate Transport Across the Membrane 35 4.7 Caesium Transport Across the Membrane 36 4.8 Boron Transport Across the Membrane 37 4.9 ATR-FTIR Results 39 4.10 The Characteristic of Cross-flow Filtration 42 CHAPTER FIVE CONCLUSIONS 5.1 Best selective membranes for iodate, caesium, and boron removal 43 5.2 Characteristics of cross-flow filtration process 43 5.3 The result for membrane surface modifications 43 REFERENCES xii APPENDIX xviii

[1] H. Hyung, J. H. Kim, A mechanistic study on boron rejection by sea water reverse osmosis membranes, Journal of Membrane Science 286 (2006) 269-278.
[2] N. Nadav, Boron removal from seawater reverse osmosis permeate utilizing selective ion exchange resin, Desalination 124 (1999) 131-135.
[3] USEPA, Preliminary investigations of effects on the environment of boron, indium, nickel, tin, vanadium, and their compounds, EPA 56/2-75-005A, 1975.
[4] World Health Organization, Guidelines for drinking-water quality, fourth edition (2011).
[5] T. Y. Cath, A. E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments (review), Journal of Membrane Science 281 (2006) 70-87.
[6] L. Song, M. Elimelech, Theory of concentration polarization in crossflow filtration, J. Chem. Soc. Faraday Trans. 91(19) (1995) 3389-3398.
[7] P. T. Cardew, Membrane processes: A technology guide royal society of chemistry (1999).
[8] W. T. Bates, Reducing the fouling rate of surface and waste water RO systems (2000).
[9] USEPA, Wastewater technology fact sheet, United States Environmental Protection Agency (2000).
[10] R. W. Baker, Membrane separation systems: Recent developments and future directions, William Andrew (1991).
[11] J. Glater, M. R. Zachariah, Mechanistic study of halogen interaction with polyamide reverse-osmosis membranes. ACS Symposium Series (1985) 345-358.
[12] J.-Y. Koo, R. J. Petersen, J. E. Cadotte, Esca characterization of chlorine-damaged polyamide reverse osmosis membrane, Polyamide Preprints Division of Polymer Chemistry American Chemical Society 27 (2) (1986), 391-392.
[13] S. H. Maruf, D. U. Ahn, A. R. Greenberg, Y. Ding, Glass transition behaviors of interfacially polymerized polyamide barrier layers on thin film composite membranes via nanothermal analysis, Polymer 52 (12) (2011), 2643-2649.
[14] S. H. Maruf, D. U. Ahn, J. Pellegrino, J. P. Killgore, A. R. Greenberg, Y. Ding, Correlation between barrier layer Tg and a thin film composite polyamide membrane’s performance: effect of chlorine treatment, Journal of Membrane Science 405-406 (2012), 167-175.
[15] S. T. Mitrouli, A. J. Karabelas, N. P. Isaias, Polyamide active layers of low pressure RO membranes: data on spatial performance non-uniformity and degradation by hypochlorite solutions, Desalinations 260 (1-3) (2010), 91-100.
[16] G. D. Kang, C. J. Gao, W. D. Chen, X. M. Jie, Y. M. Cao, Q. Yuan, Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. Journal of Membrane Science 300 (2007) 165-171.
[17] H. D. Raval, J. J. Triwedi, S. V. Joshi, C. V. Devmurari, Flux enhancement of thin film composite RO membrane by controlled chlorine treatment, Desalination 250 (3) (2010), 945-949.
[18] H. Burgi, Th. Schaffner, J. P. Seiler, The toxicology of iodate: A review of the literature, Thyroid Volume 11, Number 5 (2001), Mary Ann Liebert, Inc.
[19] K. L. Tu, L. D. Nghiem, A. R. Chivas, Review: boron removal by reverse osmosis membranes in seawater desalination applications, Separation and Purification Technology 75 (2010) 87-101.
[20] C. Bartels, R. Franks, S. Rybar, M. Schierach, M. Wilf, The effect of feed ionic strength on salt passage through reverse osmosis membranes, Desalination 184 (2005) 185-195.
[21] A. Sagiv, R. Semiat, Analysis of parameters affecting boron permeation through reverse osmosis membranes, Journal of Membrane Science 243 (2004) 79-87.
[22] V. K. Gupta, S. T. Hwang, W. B. Krantz, A. R. Greenberg, Characterization of nanofiltration and reverse osmosis membrane performance for aqueous salt solutions using irreversible thermodynamics, Desalination 208 (2007) 1-18.
[23] O. Kedem, A. Katchalsky, Physical interpretation of phenomenological coefficients of membrane permeability, J. Gen. Physiol. 45 (1961) 143-179.
[24] K. S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination 1 (1966) 311-326.
[25] M. Taniguchi, M. Kurihara, S. Kimura, Behavior of a reverse osmosis plant adopting a brine conversion two-stage process and its computer simulation, Journal of Membrane Science 183 (2001) 249-257.
[26] G. T. Ballet, L. Gzara, A. Hafiane, M. Dhahbi, Transport coefficients and cadmium salt rejection in nanofiltration membrane, Desalination 167 (2004) 369-376.
[27] D. Norberg, S. Hong, J. Taylor, Y. Zhao, Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes, Desalination 202 (2007) 45-52.
[28] J. C. T. Lin, J. J. Chen, D. J. Lee, W. M. Guo, Treating high-turbidity storm water by coagulation-membrane process, Journal of the Taiwan Institute of Chemical Engineers 43 (2012) 291-294.
[29] D. Dolar, A. Vuković, D. Ašperger, K. Košutić, Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes, Journal of Environmental Sciences 2011, 23(8) 1299-1307.
[30] O. Akoum, M. Y. Jaffrin, L. H. Ding, M. Frappart, Treatment of dairy process waters using a vibrating filtration system and NF and RO membranes, Journal of Membrane Science 235 (2004) 111-122.
[31] J. L. Acero, F. J. Benitez, A. I. Leal, F. J. Real, F. Teva, Membrane filtration technologies applied to municipal secondary effluents for potential reuse, Journal of Hazardous Materials 177 (2010) 390-398.
[32] M. Frappart, M. Y. Jaffrin, L. H. Ding, V. Espina, Effect of vibration frequency and membrane shear rate on nanofiltration of diluted milk, using a vibratory dynamic filtration system, Separation and Purification Technology 62 (2008) 212-221.
[33] J. A. Brant, K. M. Johnson, A. E. Childress, Characterizing NF and RO membrane surface heterogeneity using chemical force microscopy, Colloids and Surfaces A: Physicochem. Eng. Aspects 280 (2006) 45-57.
[34] O. Akin, F. Temelli, Effect of supercritical CO2 pressure on polymer membranes, Journal of Membrane Science 399-400 (2012) 1-10.
[35] K. Listiarini, W. Chun, D. D. Sun, J. O. Leckie, Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes, Journal of Membrane Science 344 (2009) 244-251.
[36] A. E. Childress, M. Elimelech, Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes, Journal of Membrane Science 119 (1996) 253-268.
[37] A. Szymczyk, P. Fievet, S. Bandini, On the amphoteric behavior of Desal DK nanofiltration membranes at low salt concentrations, Journal of Membrane Science 355 (2010) 60-68.
[38] Y. Zhang, C. Causserand, P. Aimar, J. P. Cravedi, Removal of bisphenol A by a nanofiltration membrane in view of drinking water production, Water Research 40 (2006) 3793-3799.
[39] H. Matsumoto, Y. C. Chen, R. Yamamoto, Y. Konosu, M. Minagawa, A. Tanioka, Membrane potentials across nanofiltration membranes: effect of nanoscaled cavity structure, Journal of Molecular Structure 739 (2005) 99-104.
[40] Z. Wang, Y. Y. Zhao, J. X. Wang, S. C. Wang, Studies on nanofiltration membrane fouling in the treatment of water solutions containing humic acids, Desalination 178 (2005) 171-178.
[41] A. I. C. Morao, A. M. B. Alves, M. D. Afonso, Concentration of clavulanic acid broths: Influence of the membrane surface charge density on NF operation, Journal of Membrane Science 281 (2006) 417-428.
[42] X. Y. Wei, Z. Wang, F. H. Fan, J. X. Wang, S. C. Wang, Advanced treatment of complex pharmaceutical wastewater by nanofiltration: Membrane foulant identification and cleaning, Desalination 251 (2010) 167-175.
[43] R. Othman, A. W. Mohammad, M. Ismail, J. Salimon, Application of polymeric solvent resistant nanofiltration membranes for biodiesel production, Journal of Membrane Science 348 (2010) 287-297.
[44] E. M. Vrijenhoek, S. Hong, M. Elimelech, Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes, Journal of Membrane Science 188 (2001) 115-128.
[45] M. Manttari, T. Pekuri, M. Nystrom, NF270, a new membrane having promising characteristics and being suitable for treatment of dilute effluents from the paper industry, Journal of Membrane Science 242 (2004) 107-116.
[46] K. L. Tu, A. R. Chivas, L. D. Nghiem, Effect of membrane fouling and scaling on boron rejection by nanofiltration and reverse osmosis membranes, Desalination 279 (2011) 269-277.
[47] J. Tanninen, S. Platt, A. Weis, M. Nystrom, Long-term acid resistance and selectivity of NF membranes in very acidic conditions, Journal of Membrane Science 240 (2004) 11-18.
[48] A. L. Ahmad, L. S. Tan, S. R. A. Shukor, Dimethoate and atrazine retention from aqueous solution by nanofiltration membranes, Journal of Hazardous Materials 151 (2008) 71-77.
[49] J. Q. Luo, Y. H. Wan, Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes, Journal of Membrane Science 372 (2011) 145-153.
[50] J. Q. Luo, L. H. Ding, Y. H. Wan, P. Paullier, M. Y. Jaffrin, Application of NF-RDM (nanofiltration rotating disk membrane) module under extreme hydraulic conditions for the treatment of dairy wastewater, Chemical Engineering Journal 163 (2010) 307-316.
[51] M. Kurihara, T. Himeshima, K. Ueno, R. Bairinji, Development of cross-linked aromatic polyamide composite reverse osmosis membranes, J. Chem. Soc. Jpn. 2 (1994) 97-107.
[52] M. Taniguchi, M. Kurihara, S. Himura, Boron reduction performance of reverse osmosis seawater desalination process, J. Membr. Sci. 183 (2001) 259-267.
[53] P. K. Dutta, J. Dutta, V. S. Tripathi, Chitin and chitosan: Chemistry, properties and applications, Journal of Scientific and Industrial Research 63 (2004) 20-31.
[54] J. Xu, X. Feng, C. Gao, Surface modification of thin-film-composite polyamide membranes for improved reverse osmosis performance, J. Membr. Sci. 370 (2011) 116-123.
[55] M. Dalwani, G. Bargeman, S. S. Hosseiny, M. Boerrigter, M. Wessling, N. E. Benes, Sulfonated poly(ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media, Journal of Membrane Science 381 (2011) 81-89.
[56] J. Xu, X.-S. Feng, C.-J. Gao, Surface modification of thin-film-composite polyamide membranes for improved reverse osmosis performance, Journal of Membrane Science 370 (2011), 116-123.
[57] K. L. Tu, L. D. Nghiem, A. R. Chivas, Coupling effects of feed solution pH and ionic strength on the rejection of boron by NF/RO membranes, Chemical Engineering Journal 168 (2011), 700-706.
[58] J. Glater, S. Hong, M. Elimelech, The research for a chlorine-resistant reverse osmosis membrane, Desalination 95 (1994), 325-345.
[59] N. P. Soice, A. C. Maladono, D. Y. Takigawa, A. D. Norman, W. B. Krantz, R. Alan, Greenberg, Oxidative degradation of polyamide reverse osmosis membranes of molecular model compounds and selected membranes, J. Appl. Polym. Sci. 90 (2003), 1173-1184.
[60] N. P. Soice, A. R. Greenberg, W. B. Krantz, A. D. Norman, Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis, J. Membr. Sci. 243 (2004), 345-355.
[61] L. A. Richards, M. Vuachere, A. I. Schafer, Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis, Desalination, Sidney Loeb Special Issue, Invited Paper, 261 (2010), 331-337.
[62] J.-E. Gu, B.-M. Jun, Y.-N. Kwon, Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane, Water Research 46 (2012), 5389-5400.
[63] P. P. Mane, P.-K. Park, H. Hyung, J. C. Brown, J.-H. Kim, Modeling boron rejection in pilot- and full-scale reverse osmosis desalination processes, J. Membr. Sci. 338 (2009), 119-127.
[64] J.-J. Qin, M.-H. Oo, B. Coniglio, Relationship between feed pH and permeate pH in reverse osmosis with town water as feed, Desalination 177 (2005), 267-272.
[65] M. Taniguchi, Y. Fusaoka, T. Nishikawa, M. Kurihara, Boron removal in RO seawater desalination. Desalination 167 (2004), 419-426.

QR CODE