簡易檢索 / 詳目顯示

研究生: 陳敬樺
Jing-Hua Chen
論文名稱: 苯硼酸為親和配體之糖化血紅素快速檢測法
Paper-based Glycosylated Hemoglobin (HbA1C) Determination Based on Interaction with Immobilized Boronic Acid
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 王孟菊
Meng-Jiy Wang
周秀慧
Shiu-Huey Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 75
中文關鍵詞: 苯硼酸糖化血紅素
外文關鍵詞: 3-aminophenylboronic acid, HbA1C
相關次數: 點閱:283下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖化血紅素的濃度為監控糖尿患者血糖值的一個重要指標,紅血球中糖化血紅素( HbA1C)所含比例反映病患近二~三個月內的平均血糖控制情況。本研究是利用硼酸分子可在微鹼性環境與醣類結構上之雙醇基團(cis-diol)產生親和性交互作用,進而分離人體血液中的糖化血紅素。首先以CM-瓊脂糖凝膠(CM-Sepharose)表面修飾上硼酸親合配體來測試吸附醣蛋白-HRP的能力,此自製之含有硼酸配體之瓊脂糖凝膠對於醣蛋白的回收率皆可達到90%以上,對HRP的親合吸附能力為17.93 mg HRP/g-dry Resin。而利用電漿表面共振儀可觀測到糖化血紅素分子與表面固定有硼酸配體之感測晶片間之交互作用,利用SPR共振角度位移量在365.9-486.5 mo之間可偵測到血液中糖化血紅素濃度在6.25-12.5%之間。此外,本研究應用表面帶有羧酸官能基之尼龍6,6薄膜(Negatively-charged Nylon 6,6)為固體基材,並藉由活化劑 1-(3-二甲氨基丙基)-3-乙基碳二亞胺鹽酸((N-(3-dimethylaminopropyl) -N′-ethylcarbodiimide hydrochloride , EDC)使3-胺基苯硼酸 (3-aminophenylboronate acid, 3-PBA)以共價鍵結合的方式固定在膜上,即成為一具有硼酸配體親和性薄膜,此親和性膜可來分離血液中糖化血紅素(Glycosylated Hemoglobin , HbAlC)。此分離出來之糖化血紅素仍具有如血紅素一般之過氧化酶活性,結合過氧化酶活性呈色法可檢測出糖化血紅素含量,本論文進一步探討利用濾紙取代比色槽作為基底,使糖化血紅速之過氧化酶活性於濾紙上所呈現呈色反應之顏色變化,以肉眼即可觀察並判斷血液中之血糖值高低,進一步可透過影像處理來量化紙上所呈現之顏色而達到定量檢測糖化血紅素的目的,結果顯示此方法可以偵測到血液中5.1-12.5%的HbAlc濃度。


    Glycosylated hemoglobin (HbA1c) concentration is currently an important diagnostic indicator for the diabetic patient. The HbA1c concentration in blood reflects the average glucose concentration of the past 2-3 months. Boronic acids is known to form reversible covalent bonds with 1, 2- or 1, 3-diols to generate five-or six-membered cyclic esters in alkaline condition that can be used as an affinity ligand for specific binding the glycosylation sites of the HbA1c. CM-Sepharose was immobilized 3-aminophenylboronic acid as an affinity ligand on the surface for efficient enrichment of glycoproteins. Horseradish peroxidase (HRP) was used as a model glycoprotein to test the affinity adsorption efficiency of the boronic acid- CM-Sepharose. The percentage of HRP recovery was 90% and the adsorption capacity of HRP was 17.93 mg HRP/g-dry Resin. Real-time detection of immobilized 3-APBA on SPR chip interaction with HbA1C by Surface plasmon resonance (SPR) was also carried out. The results showes SPR angle shifts for binding HbA1c in the concentration of 6.25%-12.5% were 365.9 moand486.5 mo, is proportional to the HbA1C concentration. Since hemoglobin also has the function of peroxidase to catalyze the reduction of hydrogen peroxide with the oxidation of N-(Carboxymethylaminocarbonyl)-4,4'-bis(dimethylamino) diphenylamine sodium salt (DA-64) to generate color, in this study, phenylboronic acid was immobilized on porous Nylon membrane to specifically bind with HbA1c. The glycated hemoglobin eluted from the phenylboronic acid-immobilized membrane still maintains its hemoglobin peroxidase activity. The HbA1c was applied on the filter paper to develop green color by using dye DA-64 mixed with hydrogen peroxide. The intensity of color developed can be distinguished by visual recognition and digitalized by imageJ software that 5.1-12.5% HbA1C in blood was succefully determined. 

    中文摘要 I 英文摘要 II 致謝III 目錄IV 圖目錄VI 表目錄VIII 第一章 緒論1 1-1 前言 1 1-2 研究目的及研究內容簡介2 第二章 文獻回顧4 2-1 硼酸親和配體4 2-1-1 硼酸及其衍生物4 2-1-2 硼酸衍生物之應用8 2-1-3 硼酸親和層析應用9 2-2 血紅蛋白與糖化血紅蛋白簡介10 2-2-1 血紅蛋白(Hemoglobin)10 2-2-2 糖化血紅蛋白(Hemoglobin)13 2-2-3 糖化血紅素檢測方法15 2-2-3-1 離子交換層析法(Cation exchange chromatography)15 2-2-3-2 硼酸親和層析法(Boronate affinity chromatography)15 2-2-3-3 免疫分析法(Immunoassay)16 2-3 表面電漿共振分析(Surface Plasmon Resonance, SPR)17 2-3-1 表面電漿共振原理17 2-3-2 生物感測晶片表面修飾 18 2-3-3 生物分子交互作用之定量分析20 2-4 紙型酵素免疫連結吸附法(Paper-besed ELISA)22 第三章 實驗材料與方法24 3-1 實驗流程24 3-2 實驗材料25 3-3 實驗藥品25 3-4 各種緩衝液與反應液28 3-5 實驗儀器及設備30 3-6 瓊脂糖凝膠固定化硼酸配體31 3-7 硼酸配體之瓊脂糖凝膠吸附辣根過氧化氫酶(HRP)31 3-8 蛋白質之濃度分析(Bradford)32 3-9 蛋白質電泳分析33 3-10 硼酸配體之瓊脂糖凝膠純化血球中的糖化血紅素(GHb)34 3-11 血紅素含量測定方法(氰化血紅素法)35 3-12 11-MUA晶片的製備36 3-13 11-MUA-APBA感應晶片的製備37 3-14 Hemoglobin過氧化酶活性分析38 3-15 血紅素之過氧化酶活性於濾紙上38 3-16 表面電漿共振儀儀器設定及操作39 3-17感應晶片表面親疏水性量測39 第四章 結果與討論 40 4-1 CM-瓊脂糖凝膠(CM-Sepharose)修飾硼酸親合配體40 4-1-1 硼酸親合配體之膠體吸附醣蛋白41 4-1-2 硼酸親合配體之膠體純化血液中糖化血紅素 45 4-1-2-1 氰化血紅素法測血紅素含量45 4-2 表面電漿共振技術檢測糖化血紅素48 4-2-1 苯硼酸胺修飾感測晶片之表面動態吸附48 4-2-2 苯硼酸胺修飾感測晶片吸附糖化血紅素50 4-2-3苯硼酸胺修飾感測晶片製備52 4-2-4 建立偵測血液中糖化血紅蛋白之檢量線54 4-3 以酵素呈色法分析血紅蛋白(Hemoglobin)之過氧化酶活性57 4-3-1 過氧化酶呈色基質濃度之探討57 4-3-2 血紅蛋白標準曲線58 4-3-3 DA-64呈色劑之消光係數與血紅蛋白之過氧化酶活性分析60 4-3-3-1 DA-64呈色劑之消光係數60 4-2-3-2 血紅蛋白(Hemoglobin)之過氧化酶活性分析61 4-4 以紙型酵素檢測法分析血紅蛋白(Hemoglobin)之過氧化酶活性63 4-4-1 紙型酵素呈色反應之平台63 4-4-2 紙型酵素呈色反應之優點64 4-4-3 紙型酵素檢測法64 4-4-4 硼酸親合配體搭配紙型酵素呈色法67 第五章 結論69 第六章 參考文獻71

    Adams, J., Behnke, M., Chen, S., Cruickshank, A. A., Dick, L. R., Grenier, L., . . . Stein, R. L. (1998). Potent and selective inhibitors of the proteasome: Dipeptidyl boronic acids. Bioorganic & Medicinal Chemistry Letters, 8(4), 333-338.
    Barker, S. A., Hatt, B. W., Somers, P. J., & Woodbury, R. R. (1973). The use of poly(4-vinylbenzeneboronic acid) resins in the fractionation and interconversion of carbohydrates. Carbohydrate Research, 26(1), 55-64.
    Battistuzzi, G., Bellei, M., Bortolotti, C. A., & Sola, M. (2010). Redox properties of heme peroxidases. Archives of Biochemistry and Biophysics, 500(1), 21-36.
    Brena, B. M., Batista-Viera, F., Rydén, L., & Porath, J. (1992). Selective adsorption of immunoglobulins and glucosylated proteins on phenylboronate-agarose. Journal of Chromatography A, 604(1), 109-115.
    Carlsson, G. H., Nicholls, P., Svistunenko, D., Berglund, G. I., & Hajdu, J. (2004). Complexes of Horseradish Peroxidase with Formate, Acetate, and Carbon Monoxide†. Biochemistry, 44(2), 635-642.
    Cooper, M. A. (2002). Optical biosensors in drug discovery. Nat Rev Drug Discov, 1(7), 515-528.
    Cordes, D. B., Gamsey, S., & Singaram, B. (2006). Fluorescent Quantum Dots with Boronic Acid Substituted Viologens To Sense Glucose in Aqueous Solution. Angewandte Chemie International Edition, 45(23), 3829-3832.
    Creran, B., Li, X., Duncan, B., Kim, C. S., Moyano, D. F., & Rotello, V. M. (2014). Detection of Bacteria Using Inkjet-Printed Enzymatic Test Strips. ACS Applied Materials & Interfaces, 6(22), 19525-19530.
    Crooks, R. M., & Ricco, A. J. (1997). New Organic Materials Suitable for Use in Chemical Sensor Arrays. Accounts of Chemical Research, 31(5), 219-227.
    Ferrier, R. J. (1978). Carbohydrate Boronates. Advances in Carbohydrate Chemistry and Biochemistry, 35, 31-80.
    Fujita, N., Shinkai, S., & James, T. D. (2008). Boronic Acids in Molecular Self-Assembly. Chemistry – An Asian Journal, 3(7), 1076-1091.
    Hall, D. G. (2006). Structure, Properties, and Preparation of Boronic Acid Derivatives. Overview of Their Reactions and Applications Boronic Acids (pp. 1-99): Wiley-VCH Verlag GmbH & Co. KGaA.
    Hsu, C.-K., Huang, H.-Y., Chen, W.-R., Nishie, W., Ujiie, H., Natsuga, K., . . . Cheng, C.-M. (2014). Paper-Based ELISA for the Detection of Autoimmune Antibodies in Body Fluid—The Case of Bullous Pemphigoid. Analytical Chemistry, 86(9), 4605-4610.
    Hsu, M.-Y., Yang, C.-Y., Hsu, W.-H., Lin, K.-H., Wang, C.-Y., Shen, Y.-C., . . . Cheng, C.-M. (2014). Monitoring the VEGF level in aqueous humor of patients with ophthalmologically relevant diseases via ultrahigh sensitive paper-based ELISA. Biomaterials, 35(12), 3729-3735.
    James, T. D., Sandanayake, K. R. A. S., & Shinkai, S. (1996). Saccharide Sensing with Molecular Receptors Based on Boronic Acid. Angewandte Chemie International Edition in English, 35(17), 1910-1922.
    John, W. G., Gray, M. R., Bates, D. L., & Beacham, J. L. (1993). Enzyme lmmunoassay-a New Technique for Estimating Hemoglobin A1c. Clinical Chemistry, 39(4), 663-666.
    Johnson, B. J. B. (1981). Synthesis of a nitrobenzeneboronic acid-substituted polyacrylamide and its use in purifying isoaccepting transfer ribonucleic acids. Biochemistry, 20(21), 6103-6108.
    Koval, D., Kasicka, V., & Cottet, H. (2011). Analysis of glycated hemoglobin A1c by capillary electrophoresis and capillary isoelectric focusing. Anal Biochem, 413(1), 8-15.
    Koyama, T., & Terauchi, K.-i. (1996). Synthesis and application of boronic acid-immobilized porous polymer particles: a novel packing for high-performance liquid affinity chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 679(1–2), 31-40.
    Kuivila, H. G., Keough, A. H., & Soboczenski, E. J. (1954). Areneboronates from Diols and Polyols1. The Journal of Organic Chemistry, 19(5), 780-783.
    Lai, Y.-C., & Lin, S.-C. (2005). Application of immobilized horseradish peroxidase for the removal of p-chlorophenol from aqueous solution. Process Biochemistry, 40(3–4), 1167-1174.
    Li, Y., Jeppsson, J.-O., Jörntén-Karlsson, M., Linné Larsson, E., Jungvid, H., Galaev, I. Y., & Mattiasson, B. (2002). Application of shielding boronate affinity chromatography in the study of the glycation pattern of haemoglobin. Journal of Chromatography B, 776(2), 149-160.
    Liu, J.-T., Chen, L.-Y., Shih, M.-C., Chang, Y., & Chen, W.-Y. (2008). The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance. Analytical Biochemistry, 375(1), 90-96.
    Lorand, J. P., & Edwards, J. O. (1959). Polyol Complexes and Structure of the Benzeneboronate Ion. The Journal of Organic Chemistry, 24(6), 769-774.
    Lu, A. T., & Whitaker, J. R. (1974). Some Factors Affecting Rates of Heat Inactivation and Reactivation of Horseradish Peroxidase. Journal of Food Science, 39(6), 1173-1178.
    Mader, H. S., & Wolfbeis, O. S. (2008). Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchimica Acta, 162(1), 1-34.
    Michaelis, A., & Becker, P. (1880). Ueber Monophenylborchlorid und die Valenz des Bors. Berichte der deutschen chemischen Gesellschaft, 13(1), 58-61.
    Middle, F. A., Bannister, A., Bellingham, A. J., & Dean, P. D. (1983). Separation of glycosylated haemoglobins using immobilized phenylboronic acid. Effect of ligand concentration, column operating conditions, and comparison with ion-exchange and isoelectric-focusing. Biochemical Journal, 209(3), 771-779.
    Miyaura, N., & Suzuki. (1995). Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 95, 2457-2483.
    Nayak, R., Rai, S., & Gupta, A. (2011). Essentials in Hematology and Clinical Pathology: Jaypee Brothers,Medical Publishers Pvt. Limited. 350-355

    Nery, E. W., & Kubota, L. T. (2013). Sensing approaches on paper-based devices: a review. Analytical and Bioanalytical Chemistry, 405(24), 7573-7595.
    Nicosia, C., & Huskens, J. (2014). Reactive self-assembled monolayers: from surface functionalization to gradient formation. Mater. Horiz., 1(1), 32-45.
    Qi, D., Zhang, H., Tang, J., Deng, C., & Zhang, X. (2010). Facile Synthesis of Mercaptophenylboronic Acid-Functionalized Core−Shell Structure Fe3O4@C@Au Magnetic Microspheres for Selective Enrichment of Glycopeptides and Glycoproteins. The Journal of Physical Chemistry C, 114(20), 9221-9226.
    Rennard, S. I., Berg, R., Martin, G. R., Foidart, J. M., & Robey, P. G. (1980). Enzyme-linked immunoassay (ELISA) for connective tissue components. Analytical Biochemistry, 104(1), 205-214.
    Rosenberg, M., Wiebers, J. L., & Gilham, P. T. (1972). Interactions of nucleotides, polynucleotides, and nucleic acids with dihydroxyboryl-substituted celluloses. Biochemistry, 11(19), 3623-3628.
    S J Cartwright, S. G. W. (1984). Purification of beta-lactamases by affinity chromatography on phenylboronic acid-agarose. Biochem J., 221(2).
    Schott, H., Rudloff, E., Schmidt, P., Roychoudhury, R., & Koessel, H. (1973). Dihydroxyboryl-substituted methacrylic polymer for the column chromatographic separation of mononucleotides, oligonucleotides, and transfer ribonucleic acid. Biochemistry, 12(5), 932-938.
    Seymour, E., & Fréchet, J. M. J. (1976a). Separation of cis diols from isomeric cis-trans mixtures by selective coupling to a regenerable solid support. Tetrahedron Letters, 17(41), 3669-3672.
    Seymour, E., & Fréchet, J. M. J. (1976b). Use of polymers as protecting groups in organic synthesis. IV. Applications of a polystyrlboronic acid resin to the selective functionalization of some glycosides. Tetrahedron Letters, 17(15), 1149-1152.
    Soh, N., Sonezaki, M., & Imato, T. (2003). Modification of a Thin Gold Film with Boronic Acid Membrane and Its Application to a Saccharide Sensor Based on Surface Plasmon Resonance. Electroanalysis, 15(1516),

    Song, S. Y., & Yoon, H. C. (2009). Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing. Sensors and Actuators B: Chemical, 140(1), 233-239.
    Springsteen, G., & Wang, B. (2002). A detailed examination of boronic acid–diol complexation. Tetrahedron, 58(26), 5291-5300.
    Stenberg, E., Persson, B., Roos, H., & Urbaniczky, C. (1991). Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. Journal of Colloid and Interface Science, 143(2), 513-526.
    Tony D James, M. D. P., Seiji Shink. (2006). Boronic Acids in Saccharide Recognition. 1-174.
    Varian, I. (2010). Phenylboronic Acid (PBA) Solid Phase Extraction Mechanisms and Applications.
    Ventura, F., Hoxter, G., & Jamra, M. (1967). [Hemoglobin: determination using the cyanmethemoglobin method. Use of an artifical solution for the calibration of colorimetric instruments]. Revista do Hospital das Clinicas, 22,

    無法下載圖示 全文公開日期 2020/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE