簡易檢索 / 詳目顯示

研究生: 黃浩白
Hao-Pai Huang
論文名稱: 含有穀胱甘肽之苯硼酸改質水膠對角膜上皮細胞暴露於苯扎氯銨後之效用
Effects of phenylboronic acid-grafted hydrogels containing glutathione in corneal epithelial cells after exposure to benzalkonium chloride
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 楊銘乾
Ming-Chien Yang
陳靖昀
Ching-Yun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 苯硼酸穀胱甘肽角膜上皮細胞羧甲基纖維素乾眼症
外文關鍵詞: 3-aminophenylboronic acid, Glutathione, Dry Eye Disease, Corneal epithelial cells, Carboxymethyl Cellulose
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乾眼症 (Dry Eye Disease) 的核心機制是淚膜不穩定,其中氧化壓力是造成乾眼症的重要原因之一,它會破壞淚液的脂質層結構以及眼表神經、杯狀細胞等,進而使得乾眼症加劇。目前臨床治療多使用局部眼藥水滴點的方式進行舒緩。然而,由於此治療方式生物利用度過低且需要頻繁的給藥,尚有許多限制需要克服。近年來有許多研究使用抗氧化劑試圖降低眼表的氧化壓力,穀胱甘肽 (Glutathione, GSH) 是人體中常見的抗氧化劑,能夠調節體內的活性氧物質。羧甲基纖維素 (Carboxymethyl Cellulose, CMC),是一種具有黏膜黏附特性的高分子,並且被美國食品藥物管理局核准用於乾眼症製劑的非活性成分。其黏膜黏附特性可以延長藥物與角膜的接觸時間,增加藥物的生物可利用度。
    在本研究中將苯硼酸 (3-aminophenylboronic acid) 以化學接枝的方式接枝於CMC,期望能夠增加其在眼表滯留的時間並降低給藥頻率,以此達到更好的治療效果。除了利用傅立葉轉換紅外光譜、紫外光光譜與核磁共振光譜分析材料改質前後的特徵峰及化學結構變化,進行水凝膠的形態學、表面電位以及流變性質評估。也進一步探討其對於遭受氧化損傷的角膜上皮細胞的治療效果。
    實驗結果顯示改質後的CMC具有良好的生物相容性,流變測試也顯示改質後的水膠有更好的黏膜貼附特性。在載藥濃度的選擇上,從細胞存活率的結果顯示,GSH對SIRC細胞的安全濃度約為800 μM。將GSH搭配水凝膠的療效評估上,先以BAK所建立SIRC細胞的氧化損傷再投予含有GSH的水凝膠,後續評估發炎因子的基因表現、細胞凋亡程度及細胞存活率評估治療效果。


    The core mechanism of dry eye is the tear film instability. Oxidative stress is one of the important causes of dry eye. It destroys the lipid layer structure of the tear fluid and the ocular surface nerves, goblet cells, etc., which in turn makes the tear film unstable. Currently, clinical treatments mostly use the way of dripping of local eye drops for soothing. However, due to the low bioavailability of this treatment and the need for frequent administration, there are still many limitations that should be overcome. In recent years, there have been many studies using antioxidants to try to reduce the oxidative stress on the ocular surface. Glutathione (GSH) is a common antioxidant body and can regulate the reactive oxygen species (ROS) level in the human body. Carboxymethyl cellulose (CMC) is a polymer with mucosal adhesion properties and has been approved by the U.S. Food and Drug Administration (FDA) as an inactive ingredient in the dry eye formulations. The mucosal adhesion properties of CMC can prolong the contact time of the drug with the cornea and increase the bioavailability of the drug.
    In this study, 3-aminophenylboronic acid was grafted to CMC. It is expected to increase the retention time of CMC on the ocular surface and reduce the frequency of administration, so as to achieve better therapeutic effect. Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to analyze the characteristic peaks and chemical structure of the modified CMC. In addition, we evaluated the morphology, surface potential and rheological properties of the develop hydrogel. The experimental results show that the modified CMC has good biocompatibility, and the rheological test also shows that the modified hydrogel has better mucosal adhesion characteristics. The cell viability test shows that the safety concentration of GSH for SIRC cells is about 800 μM. Further explore its therapeutic effect on benzalkonium chloride (BAK)-damaged corneal epithelial cells. Gene expression, apoptosis and cell viability test were used to evaluate the therapeutic effects of developed hydrogel containing GSH on BAK-damaged corneal epithelial cells.

    誌謝 I 中文摘要 II Abstract III 目錄 V 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 1 第二章 理論基礎 3 2.1 眼睛結構 3 2.1.1 結膜之基本構造 4 2.1.2 角膜之基本構造 5 2.2 乾眼症 6 2.2.1 致病成因 9 2.2.2 乾眼症之發炎機轉 11 2.2.3 乾眼症的治療 13 2.3 水凝膠 16 2.4苯硼酸 20 2.5 穀胱甘肽 21 第三章 實驗材料與方法 24 3.1 實驗藥品 24 3.2 實驗儀器 26 3.3 實驗流程圖 28 3.4 水凝膠合成 29 3.5 水凝膠性質分析 31 3.5.1 傅立葉轉換紅外線光譜測試 31 3.5.2 產物的紫外光-可見光光譜分析 31 3.5.3 核磁共振光譜測定 31 3.5.4 表面電位測定 32 3.5.5 水凝膠型態分析(掃描電子顯微鏡) 32 3.5.6 黏膜黏附測試 32 3.5.7 接觸角測試 33 3.6 穀胱甘肽的抗氧化測試 33 3.7 穀胱甘肽的藥物濃度標準曲線 35 3.8 藥物釋放測試 35 3.9 細胞存活率 35 3.9.1 角膜上皮細胞培養 36 3.9.2 苯扎氯銨對角膜上皮細胞毒性測試 38 3.9.3 穀胱甘肽對角膜上皮細胞之安全濃度 39 3.9.4 CMC-PBA水凝膠對角膜上皮細胞之安全性 39 3.10 包覆穀胱甘肽的CMC-PBA水凝膠對遭受苯扎氯銨損傷之角膜上皮細胞的影響 40 3.10.1 細胞凋亡測試 40 3.10.2 細胞存活率 41 3.11 統計分析方法 41 第四章 結果與討論 42 4.1 CMC-PBA水凝膠之性質分析 42 4.1.1 傅立葉轉換紅外線光譜測定 42 4.1.2 紫外-可見光光譜測定 43 4.1.3 核磁共振光譜測定 44 4.1.4表面電位測定 46 4.1.5 水凝膠型態分析(掃描電子顯微鏡) 46 4.1.6 黏膜黏附測試 49 4.1.7 接觸角測試 52 4.2 穀胱甘肽的抗氧化測試 54 4.3 穀胱甘肽的藥物濃度標準曲線 56 4.4 藥物釋放測試 57 4.5 細胞存活率 58 4.5.1 穀胱甘肽對角膜上皮細胞之安全濃度 58 4.5.2 CMC-PBA水凝膠對角膜上皮細胞之安全性 60 4.6 包覆穀胱甘肽的CMC-PBA水凝膠對遭受苯扎氯銨損傷之角膜上皮細胞的影響 62 4.6.1 苯扎氯銨損傷模型建立 62 4.6.2 細胞凋亡測試 66 4.6.3 細胞存活率 68 第五章 結論 71 第六章 參考文獻 72

    [1] Gayton, Johnny L., Etiology, prevalence, and treatment of dry eye disease, Clinical Ophthalmology 3(1) (2009) 405-412.
    [2] Fan Yua, Min Zheng, Alice Yang Zhang, Zongchao Han, A cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease, Journal of Controlled Release 315 (2019) 40-54.
    [3] Caijie Zhang, Yingying Zheng, Min Li, Zhongfang Zhang, Lianqing Chang, Mingyue Ai, Jingjie Wang, Shaozhen Zhao, Chen Li, and Zhimin Zhou,
    Carboxymethyl Cellulose-Coated Tacrolimus Nonspherical Microcrystals for Improved Therapeutic Efficacy of Dry Eye, Macromolecular Bioscience 20(7) (2020) 2000079
    [4] Santoshi Naik, Ajjappla Basavaraj Shreya, Ruchira Raychaudhuri, Abhijeet Pandey, Shaila A. Lewis, Manali Hazarika, Sulatha V. Bhandary, Bola Sadashiva Satish Rao, Srinivas Mutalik, Small interfering RNAs (siRNAs) based gene silencing strategies for the treatment of glaucoma: Recent advancements and future perspectives, Life Sciences 264 (2021) 118712
    [5] Laura García-Posadas, Yolanda Diebold, Three-Dimensional Human Cell Culture Models to Study the Pathophysiology of the Anterior Eye, Pharmaceutics 12(12) (2020) 1-31.
    [6] Eva Ramsay, Marika Ruponen, Theo Picardat, Unni Tengvall, Marjo Tuomainen, Seppo Auriola, Elisa Toropainen, Arto Urtti, Eva M. del Amo, Impact of Chemical Structure on Conjunctival Drug Permeability: Adopting Porcine Conjunctiva and Cassette Dosing for Construction of In Silico Model, Journal of Pharmaceutical Sciences 106(9) (2017) 2463-2471.
    [7] Keith M. Meek, Carlo Knupp, Corneal structure and transparency, Progress in Retinal and Eye Research 49 (2015) 1-16.
    [8] Sophia Masterton, Mark Ahearne, Mechanobiology of the corneal epithelium, Experimental Eye Research 177 (2018) 122-129.
    [9] Tsubota, K., Yokoi, N., Shimazaki, J., Ogawa, Y., Yamaguchi, M., New Perspectives on Dry Eye Definition and Diagnosis: A Consensus Report by the Asia Dry Eye Society, Ocular Surface15(1) (2017) 65-76.
    [10] Tsubota, K., Yokoi, N., Watanabe, H., Liu, Z., Shimazaki, J., A New Perspective on Dry Eye Classification: Proposal by the Asia Dry Eye Society, Eye and Contact Lens 46 (2020) S2-S13.
    [11] Jennifer P. Craig, Kelly K. Nichols, Esen K. Akpek, Barbara Caffery, Harminder S. Dua, Choun-Ki Joo, Zuguo Liu, J. Daniel Nelson, Jason J. Nichols, Kazuo Tsubota, Fiona Stapleton, TFOS DEWS II Definition and Classification Report, Ocular Surface 15(3) (2017) 276-283.
    [12] Shilpa Gulati, Sandeep Jain, Ocular pharmacology of tear film, dry eye, and allergic conjunctivitis, Handbook of Experimental Pharmacology 242 (2017) 97-118.
    [13] Lemp, M.A., Baudouin, C., Baum, J., Rolando, M., Toda, I., The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop (2007), Ocular Surface
    5(2) (2007) 75-92.
    [14] Kazuo Tsubota, Stephen C. Pflugfelder, Zuguo Liu, Christophe Baudouin,
    Hyo Myung Kim, Elisabeth M. Messmer, Friedrich Kruse, Lingyi Liang, Jimena Tatiana Carreno-Galeano, Maurizio Rolando, Norihiko Yokoi, Shigeru Kinoshita, Reza Dana, Defining Dry Eye from a Clinical Perspective, International Journal of Molecular Sciences 21(23) (2020) 1-24.
    [15] Stefano Barabino, Yihe Chen, Sunil Chauhan, Reza Dana, Ocular surface immunity: Homeostatic mechanisms and their disruption in dry eye disease, Progress in Retinal and Eye Research 31(3) (2012) 271-285.
    [16] Yu-Kai Kuo, I-Chan Lin, Li-Nien Chien, Tzu-Yu Lin, Ying-Ting How, Ko-Hua Chen, Gregory J. Dusting., Ching-Li Tseng, Dry Eye Disease: A Review of Epidemiology in Taiwan, and its Clinical Treatment and Merits, J. Clin. Med. 8 (2019) 1227.
    [17] Takashi Kojimaa, Murat Dogrua, Motoko Kawashimaa, Shigeru Nakamuraa, Kazuo Tsubota, Advances in the diagnosis and treatment of dry eye, Progress in Retinal and Eye Research 78 (2020) 100842.
    [18] Calonge, M., The Treatment of Dry Eye, Survey of Ophthalmology 45(SUPPL. 2) (2001)S227-S239.
    [19] Laika Essa, Deborah Laughton, James S. Wolffsohn, Can the optimum artificial tear treatment for dry eye disease be predicted from presenting signs and symptoms?, Contact Lens and Anterior Eye 41(1) (2018) 60-68.
    [20] Simmons, P., Gilbert, M., Lai, F., Vehige, J., Artificial Tear Use Improves Objective Signs and Visual Symptoms of Dry Eye, Investig. Ophthalmol. Vis. 50 (2009) 4646.
    [21] Ervin, A.M., Law, A., Pucker, A.D., Punctal occlusion for dry eye syndrome: Summary of a Cochrane systematic review, British Journal of Ophthalmology 103(3) (2019) 301-306.
    [22] Yang Hao Yung, Ikuko Toda, Chikako Sakai, Atsushi Yoshida, Kazuo Tsubota, Punctal plugs for treatment of post-LASIK dry eye, Japanese Journal of Ophthalmology 56(3) (2012) 208-213.
    [23] Olson, M.C., Korb, D.R., Greiner, J.V., Increase in tear film lipid layer thickness following treatment with warm compresses in patients with meibomian gland dysfunction. Eye Contact Lens 29 (2003) 96-99.
    [24] Arita, R., Morishige, N., Sakamoto, I., Imai, N., Shimada, Y., Igaki, M., Suzuki, A., Itoh, K., Tsubota, K., Effects of a warm compress containing menthol on the tear film in healthy subjects and dry eye patients. Scientific Reports7 (2017) 45848.
    [25] Nagymihályi, A., Dikstein, S., Tiffany, J.M., The influence of eyelid temperature on the delivery of meibomian oil. Experimental Eye Research 78 (2004) 367-370.
    [26] Borchman, D., The optimum temperature for the heat therapy for meibomian gland dysfunction, The Ocular Surface 17 (2019) 360-364.
    [27] Truscott, R.J.W., Zhu, X., Presbyopia and cataract: A question of heat and time, Progress in Retinal and Eye Research 29 (2010) 487-499.
    [28] Gamache, D.A., Wei, Z.Y., Weimer, L.K., Miller, S.T., Spellman, J.M., Yanni, J.M., Corneal protection by the ocular mucin secretagogue 15(S)-HETE in a rabbit model of desiccation-induced corneal defect, Journal of Ocular Pharmacology and Therapeutics 18 (2002) 349-361.
    [29] Keating, G.M., Diquafosol ophthalmic solution 3 %: A review of its use in dry eye, Drugs 75(8) (2015) 911-922.
    [30]Lau, O.C.F., Samarawickrama, C., Skalicky, S.E., P2Y2 receptor agonists for the treatment of dry eye disease: a review, Clinical Ophthalmology 8 (2014) 327-334.
    [31] Matsumoto, Y., Ohashi, Y., Watanabe, H., Tsubota, K., Efficacy and safety of diquafosol ophthalmic solution in patients with dry eye syndrome: A Japanese phase 2 clinical trial. Ophthalmology 119 (2012) 1954-1960.
    [32] Pleyer, U., Ursell, P.G., Rama, P. Intraocular pressure effects of common topical steroids for post-cataract inflammation: Are they all the same?, Ophthalmol. Ther 2 (2013) 55-72.
    [33] Cutolo, C.A., Barabino, S., Bonzano, C., Traverso, C.E., The Use of Topical Corticosteroids for Treatment of Dry Eye Syndrome, Ocular Immunology and Inflammation 27 (2019) 266-275.
    [34] C.S. de Paiva, S.C. Pflugfelder, S.M. Ng, E.K. Akpek Topical cyclosporine A therapy for dry eye syndrome, Cochrane Database of Systematic Reviews 9 (2019) CD010051.
    [35] Olivia L. Lanier, Miranda G. Manfre, Claire Bailey, Zhen Liu, Zachary Sparks,
    Sandesh Kulkarni, Anuj Chauhan, Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations, AAPS PharmSciTech 22(3) (2021) 107.
    [36] Lanier OL, Christopher K, Macoon RM, Yu Y, Sekar P, Chauhan A., Commercialization challenges for drug eluting contact lenses, Expert Opinion on Drug Delivery 17 (2020).
    [37] Caroline Debbasch, Pierre-Jean Pisella, Magda De Saint Jean, Patrice Rat,
    Jean-Michel Warnet, Christophe Baudouin, Mitochondrial activity and glutathione injury in apoptosis induced by unpreserved and preserved β-blockers on chang conjunctival cells, Investigative Ophthalmology and Visual Science 42(11) (2001) 2525-2533.
    [38] Qian Yang, Yafang Zhang, Xiuping Liu, Nan Wang, Zhenyu Song, Kaili Wu, A comparison of the effects of benzalkonium chloride on ocular surfaces between C57BL/6 and BALB/c mice, International Journal of Molecular Sciences 18(3) (2017) 509.
    [39] Sophia Seen, Louis Tong, Dry eye disease and oxidative stress, Acta Ophthalmologica 96(4) (2018) e412-e420.
    [40] Remy C. Cooper, Hu Yang, Hydrogel-based ocular drug delivery systems: Emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations, Journal of Controlled Release306 (2019) 29-39.
    [41] Jones, L., Downie, L.E., Korb, D., Wolffsohn, J.S., Craig, J.P., TFOS DEWS II Management and Therapy Report, Ocular Surface 15(3) (2017) 575-628.
    [42] S. Kamel, N. Ali, K. Jahangir, S.M. Shah, A.A. El-Gendy, Pharmaceutical significance of cellulose: a review Express Polym Lett, 2 (11) (2008) 758-778.
    [43] A. Bruix, A. Adan, R.P. Casaroli-Marano, Efficacy of sodium carboxymethylcellulose in the treatment of dry eye syndrome, Archivos de la Sociedad Espanola de Oftalmologia 81(2) (2006) 85-92.
    [44] R.J. Noecker, Comparison of initial treatment response to two enhanced-viscosity artificial tears, Eye Contact Lens, 32 (3) (2006) 148-152.
    [45]J.H. Lee, H.S. Ahn, E.K. Kim, T.I. Kim, Efficacy of sodium hyaluronate and carboxymethylcellulose in treating mild to moderate dry eye disease, Cornea 30(2) (2011) 175-179.
    [46] L. Tong, A. Petznick, S. Lee, J. Tan, Choice of artificial tear formulation for patients with dry eye: where do we start?, Cornea 31(Suppl 1) (2012) S32-S36.
    [47] A.D. Pucker, S.M. Ng, J.J., Nichols Over the counter (OTC) artificial tear drops for dry eye syndrome,Cochrane Database of Systematic Reviews 2016(2) CD009729.
    [48] M.J. Rah, A review of hyaluronan and its ophthalmic applications, Optometry 82(1) (2011) 38-43.
    [49] Rahman, M.S., Hasan, M.S., Nitai, A.S., Shiddiky, M.J.A., Ahmed, M.B., Recent Developments of Carboxymethyl Cellulose, Polymers 13(8) (2021) 1345.
    [50] Hovhannes J. Gukasyan, Kwang-JinKim, Vincent H. L. Lee, RamKannan, Glutathione and Its Transporters in Ocular Surface Defense, Ocular Surface 5(4) (2007) 269-279.
    [51] María Sebastián-Morelló, Adrián M. Alambiaga-Caravaca, María Aracely Calatayud-Pascual,Vicent Rodilla, Cristina Balaguer-Fernández, María Miranda and Alicia López-Castellano, Ex-Vivo Trans-Corneal and Trans-Scleral Diffusion Studies with Ocular Formulations of Glutathione as an Antioxidant Treatment for Ocular Diseases, Pharmaceutics 12(9) (2020) 861.
    [52] Hisanao Izumia, Keita Satoa, Kazuhiro Kojima, Takashi Saito, Takaomi C. Saido, Kohji Fukunaga, Oral glutathione administration inhibits the oxidative stress and the inflammatory responses in AppNL−G-F/NL−G-F knock-in mice, Neuropharmacology 168 (2020) 108026.
    [53] Stuart A. Allison, Yao Xin, Hongxia Pei, Electrophoresis of spheres with uniform zeta potential in a gel modeled as an effective medium, Journal of Colloid and Interface Science 313 (2007) 328-337.
    [54] Twana Mohammed M. Ways, Wing Man Lau, Vitaliy V. Khutoryanskiy, Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems, Polymers 10 (2018) 267.
    [55] Ridhdhi S. Dave, Taylor C. Goostrey, Maya Ziolkowska, Sofia Czerny-Holownia, Todd Hoare, Heather Sheardown, Ocular drug delivery to the anterior segment using nanocarriers: A mucoadhesive/mucopenetrative perspective, Journal of Controlled Release, 336 (2021) 71-88.
    [56] Ruairí P. Brannigan, Vitaliy V. Khutoryanskiy, Progress and Current Trends in the Synthesis of Novel Polymers with Enhanced Mucoadhesive Properties, Macromolecular Bioscience 19 (2019) 1900194.
    [57] Sreg Springsteen, Binghe Wang, A detailed examination of boronic acid-diol complexation, Tetrahedron 58 (2002) 5291-5300
    [58] RobertaMasella, Roberta Di Benedetto, Rosaria Varì, Carmela Filesi, Claudio Giovannini, Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes, Journal of Nutritional Biochemistry 16 (2005) 577-586578.
    [59] Heng An, Yunyi Bo, Danyang Chen, Yong Wang, Haijun Wang, Yingna He, Jianglei Qin, Cellulose-based self-healing hydrogel through boronic ester bonds with excellent biocompatibility and conductivity, RSC Advances 10(19) (2020) 11300-11310.
    [60]Bisera Jurišić Dukovski, Marina Juretić, Danka Bračko, Danijela Randjelović, Snežana Savićd, Mario Crespo Moral, Yolanda Diebold, Jelena Filipović-Grčić, Ivan Pepić, Jasmina Lovrić, Functional ibuprofen-loaded cationic nanoemulsion: Development and optimization for dry eye disease treatment, International Journal of Pharmaceutics 576 (2020) 118979.
    [61] Adnan Alam, Mubashir Rehman, Bilal Khan, Khurshid Alam, Adnan Ahmad, Comparison of Pterygium Resection with Conjunctival Auto Graft Versus Amniotic Membrane Graft, Pakistan Journal of Ophthalmology 31 (2015) 4.
    [62] Y. Park, J.S. Song, C.Y. HChoi, K.C. Yoon, H.K. Lee, H.S. Kim, A Randomized Multicenter Study Comparing 0.1%, 0.15%, and 0.3% Sodium Hyaluronate with 0.05% Cyclosporine in the Treatment of Dry Eye, J Ocul Pharmacol Ther 33(2) (2017) 66-72.
    [63] Baudouin, C., De La Maza, M.S., Amrane, M., Figueiredo, F.C., Leonardi, A., One-Year Efficacy and Safety of 0.1% Cyclosporine a Cationic Emulsion in the Treatment of Severe Dry Eye Disease, Eur J Ophthalmol 27(6) (2017) 678-685.
    [64] Hori, Y. Secreted Mucins on the Ocular Surface. Investig. Ophthalmol, 59 (2018) 151-156.
    [65] Kahn, D., Mazzaferro, V., Cervio, G., Venkataramanan, R., Makowka, L., Van Thiel, D.H., Starzl, T.E., Correlation between dose and level of cyclosporine after orthotopic liver transplantation. Transplant. Proc. 21 (1989) 2240-2241.
    [66] Michelle K Rhee, Francis S Mah, Clinical utility of cyclosporine (CsA) ophthalmic emulsion 0.05% for symptomatic relief in people with chronic dry eye: a review of the literature, Clin Ophthalmol 11 (2017) 1157-1166.
    [67] Clyde Schultz, Safety and Efficacy of Cyclosporine in the Treatment of Chronic Dry Eye, Ophthalmol Eye DDis 6 (2014) 1167-1166.
    [68] Shastri D, Shelat P, Shukla A, Patel P., Ophthalmic drug delivery system: challenges and approaches. Syst Rev Pharm 1(2) (2010) 113-20.
    [69] Başaran E, Yazan Y., Ocular application of chitosan. Expert Opin. Drug Deliv. 9(6) (2012) 701-712.
    [70] Ludwig A., The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 47(11) (2005) 1595-1639.
    [71] A.R. Wegener, L.M. Meyer, C.L. Schönfeld, Effect of viscous agents on corneal density in dry eye disease, J Ocul Pharmacol Ther 31 (8) (2015) 504-508.
    [72] F. Yu, X. Liu, Y. Zhong, X. Guo, M. Li, Z. Mao, Sodium hyaluronate decreases ocular surface toxicity induced by benzalkonium chloride-preserved latanoprost: an in vivo study, Invest Ophthalmol Vis Sci 54 (2013) 3385-3393.
    [73] J.A. Gomes, R. Amankwah, A. Powell-Richards, H.S. Dua, Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro, Br J Ophthalmol 88(6) (2004) 821-825.
    [74] G. Camillieri, C. Bucolo, S. Rossi, F. Drago, Hyaluronan-induced stimulation of corneal wound healing is a pure pharmacological effect, J Ocul Pharmacol Ther 20(6) (2004) 548-553.
    [75] G. Yang, L. Espandar, N. Mamalis, G.D. Prestwich, A cross-linked hyaluronan gel accelerates healing of corneal epithelial abrasion and alkali burn injuries in rabbits, Vet Ophthalmol 13(3) (2010) 144-150.
    [76] W.T. Ho, T.H. Chiang, S.W. Chang, Y.H. Chen, F.R. Hu, I.J. Wang, Enhanced corneal wound healing with hyaluronic acid and high-potassium artificial tears, Clin Exp Optom 96(6) (2013) 536-541.
    [77] C. Springs, Novel ocular lubricant containing an intelligent delivery system: details of its mechanism of action, Dev Ophthalmol 45 (2010) 139-147.
    [78] U. Benelli, Systane lubricant eye drops in the management of ocular dryness, Clin Ophthalmol 5 (2011) 783-790.
    [79] S.W. Moon, J.H. Hwang, S.H. Chung, K.H. Nam, The impact of artificial tears containing hydroxypropyl guar on mucous layer, Cornea 29 (12) (2010) 1430-1435.
    [80] M.A. Sánchez, P. Arriola-Villalobos, P. Torralbo-Jiménez, N. Girón, B. de la Heras, R. Herrero Vanrell, The effect of preservative-free HP-Guar on dry eye after phacoemulsification: a flow cytometric study Eye (Lond) 24(8) (2010) 1331-1337.
    [81] Casettari L., Vllasaliu D., Castagnino E., Stolnik S., Howdle S., Illum L., PEGylated chitosan derivatives: Synthesis, characterisations and pharmaceutical applications, Prog. Polym. Sci. 37 (2012) 659-685.
    [82] C. Menzel, S. Bonengel, I. Pereira de Sousa, F. Laffleur, F. Prufert, A. Bernkop-Schnurch, Preactivated thiolated nanoparticles: A novel mucoadhesive dosage form, Int. J. Pharm. 497 (1-2) (2016) 123-128.
    [83] C. Li, Z. Liu, X. Yan, W. Lu, Y. Liu, Mucin-controlled drug release from mucoadhesive phenylboronic acid-rich nanoparticles, Int. J. Pharm. 479(1) (2015) 261-264.
    [84] G. Prosperi-Porta, S. Kedzior, B. Muirhead, H. Sheardown, Phenylboronic-acid-based polymeric micelles for mucoadhesive anterior segment ocular drug delivery, Biomacromolecules 17(4) (2016) 1449-1457.
    [85] Sebastián-Morelló M. , Alambiaga-Caravaca, Calatayud-Pascual, Miranda, M. , López-Castellano, A., Ex-Vivo Trans-Corneal and Trans-Scleral Diffusion Studies with Ocular Formulations of Glutathione as an Antioxidant Treatment for Ocular Diseases, Pharmaceutics 12(9) (2020) 1-13.
    [86] Ankita Umapathy, Paul Donaldson, Julie Lim, Antioxidant Delivery Pathways in the Anterior Eye, BioMed Research International (2013) 207250.
    [87] Paulina Tokarz, Kai Kaarniranta, Janusz Blasiak, Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD), Biogerontology 14(5) (2013) 461-482.
    [88] A. Argyrou, J.S. Blanchard, Flavoprotein disulfide reductases: advances in chemistry and function, Prog Nucleic Acid Res Mol Biol 78 (2004) 89-142.
    [89] Izumi, H., Sato, K., Kojima, K., Saito, T., Saido, T.C., Fukunaga, K., Oral glutathione administration inhibits the oxidative stress and the inflammatory responses in AppNL-G-F/NL-G-F knock-in mice, Neuropharmacology 168 (2020) 108026.
    [90] Sinha, R., Sinha, I., Calcagnotto, A., Trushin, N.,Haley, J.S., Schell, T.D., Richie, J.P., Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function, Eur. J. Clin. Nutr. 72 (2018) 105-111.
    [91] Mischley, L.K., Lau, R.C., Shankland, E.G., Wilbur, T.K., Padowski, J.M., Phase IIb Study of Intranasal Glutathione in Parkinson’s Disease, J. Parkinsons Dis. 7 (2017) 289-299.
    [92] Sanz, M.M., Johnson, L.E., Ahuja, S., Ekström, P.A.R., Romero, J., van Veen, T., Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration, Neuroscience 145 (2007) 1120-1129.
    [93] Miranda, M., Arnal, E., Ahuja, S., Alvarez-Nölting, R., López-Pedrajas, R., Ekström, P., Bosch-Morell, F., van Veen, T., Romero, F.J., Antioxidants rescue photoreceptors in rd1 mice: Relationship with thiol metabolism, Free Radic. Biol. Med. 48 (2010) 216-222.
    [94] D. Mukhopadhyay, P. Dasgupta, D. Sinha Roy, S. Palchoudhuri, I. Chatterjee, S. Ali, S. Ghosh Dastidar, A Sensitive In vitro Spectrophotometric Hydrogen Peroxide Scavenging Assay using 1,10-Phenanthroline, Free Radicals and Antioxidants 6(1) (2016) 124-132.
    [95] Jennifer S., Lozano, Edward Y. Chay, Jeffrey Healey, Rebecca Sullenberger, Jes K.Klarlund, Activation of the epidermal growth factor receptor by hydrogels in artificial tears, Experimental Eye Research 86(3) (2008) 500-505

    無法下載圖示 全文公開日期 2026/10/28 (校內網路)
    全文公開日期 2026/10/28 (校外網路)
    全文公開日期 2026/10/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE