簡易檢索 / 詳目顯示

研究生: 林冠宇
Kuan-Yu Lin
論文名稱: 羧甲基纖維素塗層之抗氧化奈米粒子用於改善防腐劑對角膜上皮細胞之損傷
Carboxymethyl cellulose-coated antioxidant nanoparticles for rescuing the corneal epithelial cells from preservative-induced injury
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 賴志遠
James Lai
楊銘乾
Ming-Chien Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 乾眼症角膜上皮細胞幾丁聚醣阿魏酸奈米粒子羧甲基纖維素
外文關鍵詞: dry eye disease, corneal epithelial cells, carboxymethyl cellulose, chitosan, ferulic acid
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乾眼症 (Dry eye disease, DED) 為一種眼表的多因素疾病,會導致不適、視力障礙和淚膜不穩定等症狀,並伴隨淚膜滲透壓升高和眼部發炎因子濃度上升。隨著氧化壓力 (Oxidative stress) 的上升,脂質層結構及杯狀細胞會遭受損傷使得乾眼症加劇。阿魏酸 (Ferulic acid, FA),是一種常見的抗氧化劑,能夠降低活性氧物質的活性。羧甲基纖維素 (Carboxymethyl cellulose, CMC),是一種羧甲基取代的陰離子纖維素聚合物,具有良好的生物黏附特性及剪切稀化的性質,現已被使用在舒緩乾眼症的眼滴劑中。於此研究中將 FA 藉由化學方法接枝於幾丁聚醣 (Chitosan, CS) 製成阿魏酸奈米粒子 (F-NPs),接著進一步以 CMC 披覆於阿魏酸奈米粒子外,製成以 CMC 為塗層之阿魏酸奈米粒子 (CF-NPs),希望能夠達到藥物緩釋及提升黏膜黏附特性,以此達到更好的療效。本實驗藉由傅立葉轉換紅外光譜、熱重損失性質分析與核磁共振光譜探討材料接枝前後的峰質轉移及化學結構變化,再透過粒徑測量、形態學、表面電位、滲透壓測試、流變性質及藥物釋放評估奈米粒子之性質,再以細胞存活率評估奈米粒子對兔角膜上皮細胞 (Statens seruminstitut rabbit cornea, SIRC) 之理想濃度為 400 μM,後續以苯扎氯銨 (Benzalkonium chloride, BAK) 誘導 SIRC 的損傷再加入 F-NPS 及 CF-NPs 進行治療發現皆可以顯著的降低發炎因子、減少細胞凋亡以及使細胞存活率回升。


    Dry eye disease (DED) is a multifactorial disease of the tears and ocular surface that can cause symptoms such as discomfort, visual disturbances and tear film instability, accompanied by elevating tear film osmolarity and increasing concentrations of ocular inflammatory factors. As oxidative stress increases, it will damage the lipid layer structure and goblet cells and then exacerbate dry eye.Ferulic acid (FA) is a common antioxidant which is able to reduce the active of reactive oxygen species. Carboxymethyl cellulose (CMC) is a carboxyl-substituted anionic cellulose polymer which had good bioadhesive and shear-thinning properties. It had been used on soothing eye drops. In this study, ferulic acid would be chemically grafted onto chitosan (CS) to form FA-grafted CS nanoparticles (F-NPs), followed by coating CMC to form FA-grafted CS nanoparticles coating with CMC (CF-NPs). To achieve better therapeutic efficacy by slowing drug release and enhancing mucosal adhesion. In this experiment, the peak shifted and changed in chemical structure after grafting was investigated by Fourier transform infrared spectroscopy, thermogravity analysis and nuclear magnetic resonance spectroscopy. Particle size, morphology, surface potential, osmolarity, rheology and in vitro drug release experiment were carried out to study the properties of the nanoparticles. The ideal concentration of nanoparticles on statens seruminstitut rabbit cornea (SIRC) evaluated by cell viability was 400 μM. Subsequently induced cell damage with benzalkonium (BAK) and treated with F-NPs and CF-NPs. The experimental results showed that both F-NPs and CF-NPs had significantly reduced inflammatory factors, decreased apoptosis, and increased cell viability when treated on BAK-induced damage to SIRC.

    誌謝 I 中文摘要 IV ABSTRACT V 目錄 VII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 第二章 理論基礎 2 2.1 眼睛結構 2 2.1.1 結膜之基本構造 3 2.1.2 角膜之基本構造 4 2.2 乾眼症 6 2.2.1 致病成因 8 2.2.2 乾眼症之發炎機轉 12 2.2.3 乾眼症的治療 14 2.3 奈米藥物載體 18 2.4 幾丁聚醣 20 2.5 羧甲基纖維素 24 2.6 阿魏酸 26 第三章 實驗材料與方法 31 3.1 實驗藥品 31 3.2 實驗儀器 33 3.3 實驗流程圖 35 3.4 奈米粒子合成 37 3.5 奈米粒子性質分析 38 3.5.1 傅立葉轉換紅外線光譜測試 38 3.5.2 核磁共振光譜測定 38 3.5.3 熱重分析儀 38 3.5.4 表面電位測定 39 3.5.5 奈米粒子型態分析 39 3.5.6 黏膜黏附測試 39 3.5.7 滲透壓測試 40 3.6 阿魏酸的抗氧化測試 41 3.7 阿魏酸的藥物濃度標準曲線 43 3.8 藥物釋放測試 43 3.9 細胞存活率 44 3.9.1 角膜上皮細胞培養 44 3.9.2 苯扎氯銨對角膜上皮細胞毒性測試 46 3.9.3 F-NPS 對角膜上皮細胞之安全濃度測試 47 3.9.4 CF-NPS 對角膜上皮細胞之安全濃度測試 47 3.10 裝載阿魏酸的奈米粒子對受到苯扎氯銨誘導損傷之角膜上皮細胞 的影響 48 3.10.1 基因表現 48 3.10.2 細胞凋亡測試 50 3.10.3 細胞存活率 51 3.11 統計分析方法 51 第四章 結果與討論 52 4.1 奈米粒子之性質分析 52 4.1.1 傅立葉轉換紅外線光譜測定 52 4.1.2 核磁共振光譜測定 53 4.1.3 熱重損失測定 55 4.1.4 奈米粒子滲透壓測試 57 4.1.5 表面電位測定 57 4.1.6 奈米粒子粒徑及分佈分析 58 4.1.7 奈米粒子型態分析 (穿透式電子顯微鏡) 60 4.1.8 黏膜黏附測試 62 4.2 阿魏酸的抗氧化測試 64 4.3 阿魏酸的藥物濃度標準曲線 65 4.4 藥物釋放測試 66 4.5奈米粒子對角膜上皮細胞之安全濃度 67 4.6奈米粒子對遭受苯扎氯銨損傷之角膜上皮細胞的影響 69 4.6.1 苯扎氯銨損傷模型建立 69 4.6.2 基因表現 72 4.6.3 細胞凋亡測試 74 4.6.4 細胞存活率 76 第五章 結論 78 第六章 參考文獻 80

    [1] M.A.D. Ajenjo, M.C.G. Domene, C.P. Martínez, Refractive changes in nuclear, cortical and posterior subcapsular cataracts. Effect of the type and grade, Journal of optometry 8(2) (2015) 86-92.
    [2] S.B. Han, J.Y. Hyon, S.J. Woo, J.J. Lee, T.H. Kim, K.W. Kim, Prevalence of dry eye disease in an elderly Korean population, Archives of ophthalmology 129(5) (2011) 633-638.
    [3] I.V. Lollett, A. Galor, Dry eye syndrome: developments and lifitegrast in perspective, Clinical Ophthalmology (Auckland, NZ) 12 (2018) 125.
    [4] C. Zhang, Y. Zheng, M. Li, Z. Zhang, L. Chang, M. Ai, J. Wang, S. Zhao, C. Li, Z. Zhou, Carboxymethyl Cellulose‐Coated Tacrolimus Nonspherical Microcrystals for Improved Therapeutic Efficacy of Dry Eye, Macromolecular Bioscience 20(7) (2020) 2000079.
    [5] C.E. Willoughby, D. Ponzin, S. Ferrari, A. Lobo, K. Landau, Y. Omidi, Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function–a review, Clinical & Experimental Ophthalmology 38 (2010) 2-11.
    [6] E. Ramsay, M. Ruponen, T. Picardat, U. Tengvall, M. Tuomainen, S. Auriola, E. Toropainen, A. Urtti, E.M. Del Amo, Impact of chemical structure on conjunctival drug permeability: adopting porcine conjunctiva and cassette dosing for construction of in silico model, Journal of pharmaceutical sciences 106(9) (2017) 2463-2471.
    [7] L. García-Posadas, Y. Diebold, Three-Dimensional Human Cell Culture Models to Study the Pathophysiology of the Anterior Eye, Pharmaceutics 12(12) (2020) 1215.
    [8] F. Yu, M. Zheng, A.Y. Zhang, Z. Han, A cerium oxide loaded glycol chitosan nano-system for the treatment of dry eye disease, Journal of Controlled Release 315 (2019) 40-54.
    [9] K. Cholkar, S.R. Dasari, D. Pal, A.K. Mitra, Eye: anatomy, physiology and barriers to drug delivery, Ocular transporters and receptors, Elsevier2013, pp. 1-36.
    [10] K. Tsubota, N. Yokoi, H. Watanabe, M. Dogru, T. Kojima, M. Yamada, S. Kinoshita, H.-M. Kim, H.-W. Tchah, J.Y. Hyon, A new perspective on dry eye classification: Proposal by the Asia Dry Eye Society, Eye & contact lens 46(1) (2020) S2.
    [11] A. Michael, M. Lemp, N. Gary, The definition & classification of dry eye disease, Guidelines from the 2007 International Dry Eye Workshop, 2008.
    [12] J.M. Albietz, Prevalence of dry eye subtypes in clinical optometry practice, Optometry and Vision Science 77(7) (2000) 357-363.
    [13] C. Debbasch, P.-J. Pisella, M. De Saint Jean, P. Rat, J.-M. Warnet, C. Baudouin, Mitochondrial activity and glutathione injury in apoptosis induced by unpreserved and preserved β-blockers on Chang conjunctival cells, Investigative ophthalmology & visual science 42(11) (2001) 2525-2533.
    [14] Z. Lin, X. Liu, T. Zhou, Y. Wang, L. Bai, H. He, Z. Liu, A mouse dry eye model induced by topical administration of benzalkonium chloride, Molecular vision 17 (2011) 257.
    [15] O.C. Lau, C. Samarawickrama, S.E. Skalicky, P2Y2 receptor agonists for the treatment of dry eye disease: a review, Clinical Ophthalmology (Auckland, NZ) 8 (2014) 327.
    [16] Y. Wei, P.A. Asbell, The core mechanism of dry eye disease (DED) is inflammation, Eye & contact lens 40(4) (2014) 248.
    [17] S.C. Pflugfelder, Antiinflammatory therapy for dry eye, American journal of ophthalmology 137(2) (2004) 337-342.
    [18] M.C. Olson, D.R. Korb, J.V. Greiner, Increase in tear film lipid layer thickness following treatment with warm compresses in patients with meibomian gland dysfunction, Eye & contact lens 29(2) (2003) 96-99.
    [19] S. Gulati, S. Jain, Ocular pharmacology of tear film, dry eye, and allergic conjunctivitis, Pharmacologic Therapy of Ocular Disease, Springer2016, pp. 97-118.
    [20] A. Yagci, C. Gurdal, The role and treatment of inflammation in dry eye disease, International Ophthalmology 34(6) (2014) 1291-1301.
    [21] H. Lin, S.C. Yiu, Dry eye disease: a review of diagnostic approaches and treatments, Saudi Journal of Ophthalmology 28(3) (2014) 173-181.
    [22] P. Simmons, M. Gilbert, F. Lai, J. Vehige, Artificial Tear Use Improves Objective Signs and Visual Symptoms of Dry Eye, Investigative Ophthalmology & Visual Science 50(13) (2009) 4646-4646.
    [23] B. Yavuz, S. Bozdağ Pehlivan, N. Ünlü, An overview on dry eye treatment: approaches for cyclosporin a delivery, The Scientific World Journal 2012 (2012).
    [24] Y.H. Yung, I. Toda, C. Sakai, A. Yoshida, K. Tsubota, Punctal plugs for treatment of post-LASIK dry eye, Japanese journal of ophthalmology 56(3) (2012) 208-213.
    [25] R. Arita, N. Morishige, I. Sakamoto, N. Imai, Y. Shimada, M. Igaki, A. Suzuki, K. Itoh, K. Tsubota, Effects of a warm compress containing menthol on the tear film in healthy subjects and dry eye patients, Scientific reports 7(1) (2017) 1-6.
    [26] A. Nagymihályi, S. Dikstein, J.M. Tiffany, The influence of eyelid temperature on the delivery of meibomian oil, Experimental eye research 78(3) (2004) 367-370.
    [27] Y. Matsumoto, Y. Ohashi, H. Watanabe, K. Tsubota, D.O.S.P.S. Group, Efficacy and safety of diquafosol ophthalmic solution in patients with dry eye syndrome: a Japanese phase 2 clinical trial, Ophthalmology 119(10) (2012) 1954-1960.
    [28] Y.-K. Kuo, I. Lin, L.-N. Chien, T.-Y. Lin, Y.-T. How, K.-H. Chen, G.J. Dusting, C.-L. Tseng, Dry eye disease: a review of epidemiology in Taiwan, and its clinical treatment and merits, Journal of Clinical Medicine 8(8) (2019) 1227.
    [29] O.L. Lanier, K.G. Christopher, R.M. Macoon, Y. Yu, P. Sekar, A. Chauhan, Commercialization challenges for drug eluting contact lenses, Expert Opinion on Drug Delivery 17(8) (2020) 1133-1149.
    [30] A. Ludwig, The use of mucoadhesive polymers in ocular drug delivery, Advanced drug delivery reviews 57(11) (2005) 1595-1639.
    [31] R.J. Truscott, X. Zhu, Presbyopia and cataract: a question of heat and time, Progress in retinal and eye research 29(6) (2010) 487-499.
    [32] J. Safari, Z. Zarnegar, Advanced drug delivery systems: Nanotechnology of health design A review, Journal of Saudi Chemical Society 18(2) (2014) 85-99.
    [33] C. Lemarchand, R. Gref, P. Couvreur, Polysaccharide-decorated nanoparticles, European Journal of Pharmaceutics and Biopharmaceutics 58(2) (2004) 327-341.
    [34] B. Le-Vinh, N.-M.N. Le, I. Nazir, B. Matuszczak, A. Bernkop-Schnürch, Chitosan based micelle with zeta potential changing property for effective mucosal drug delivery, International journal of biological macromolecules 133 (2019) 647-655.
    [35] D. Papahadjopoulos, H.K. Kimelberg, Phospholipid vesicles (liposomes) as models for biological membranes: their properties and interactions with cholesterol and proteins, Progress in surface science 4 (1974) 141-232.
    [36] A. Mahmood, M. Lanthaler, F. Laffleur, C.W. Huck, A. Bernkop-Schnürch, Thiolated chitosan micelles: Highly mucoadhesive drug carriers, Carbohydrate polymers 167 (2017) 250-258.
    [37] A.R.N. Pontillo, A. Detsi, Nanoparticles for ocular drug delivery: Modified and non-modified chitosan as a promising biocompatible carrier, Nanomedicine 14(14) (2019) 1889-1909.
    [38] N. Islam, I. Dmour, M.O. Taha, Degradability of chitosan micro/nanoparticles for pulmonary drug delivery, Heliyon 5(5) (2019) e01684.
    [39] Z. Shariatinia, Pharmaceutical applications of chitosan, Advances in colloid and interface science 263 (2019) 131-194.
    [40] Z. Shariatinia, A. Mohammadi-Denyani, Advances in polymers for drug delivery and wound healing applications, Advances in polymers for biomedical applications (2018) 85-141.
    [41] Z. Shariatinia, Carboxymethyl chitosan: Properties and biomedical applications, International journal of biological macromolecules 120 (2018) 1406-1419.
    [42] R.M. Saeed, I. Dmour, M.O. Taha, Stable chitosan-based nanoparticles using polyphosphoric acid or hexametaphosphate for tandem ionotropic/covalent crosslinking and subsequent investigation as novel vehicles for drug delivery, Frontiers in bioengineering and biotechnology 8 (2020) 4.
    [43] S. Naskar, S. Sharma, K. Kuotsu, Chitosan-based nanoparticles: An overview of biomedical applications and its preparation, Journal of Drug Delivery Science and Technology 49 (2019) 66-81.
    [44] S.S. Imam, S.N.A. Bukhari, J. Ahmad, A. Ali, Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: In-vitro characterization, ocular tolerance and antibacterial activity, International journal of biological macromolecules 108 (2018) 650-659.
    [45] S. Cascone, G. Lamberti, Hydrogel-based commercial products for biomedical applications: A review, International journal of pharmaceutics 573 (2020) 118803.
    [46] S. Li, S. Dong, W. Xu, S. Tu, L. Yan, C. Zhao, J. Ding, X. Chen, Antibacterial hydrogels, Advanced science 5(5) (2018) 1700527.
    [47] M. Patchan, J. Graham, Z. Xia, J. Maranchi, R. McCally, O. Schein, J. Elisseeff, M. Trexler, Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage, Materials Science and Engineering: C 33(5) (2013) 3069-3076.
    [48] C. Chang, L. Zhang, Cellulose-based hydrogels: Present status and application prospects, Carbohydrate polymers 84(1) (2011) 40-53.
    [49] J. Fujimoto, D. Petri, Adsorption behavior of carboxymethylcellulose on amino-terminated surfaces, Langmuir 17(1) (2001) 56-60.
    [50] G. Aguilera, C.C. Berry, R.M. West, E. Gonzalez-Monterrubio, A. Angulo-Molina, Ó. Arias-Carrión, M.Á. Méndez-Rojas, Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood–brain barrier, Nanoscale Advances 1(2) (2019) 671-685.
    [51] P. Aragona, J.M. Benítez-del-Castillo, M.T. Coroneo, S. Mukherji, J. Tan, E. Vandewalle, A. Vingrys, H. Liu, C. Carlisle-Wilcox, J. Vehige, Safety and Efficacy of a Preservative-Free Artificial Tear Containing Carboxymethylcellulose and Hyaluronic Acid for Dry Eye Disease: A Randomized, Controlled, Multicenter 3-Month Study, Clinical Ophthalmology (Auckland, NZ) 14 (2020) 2951.
    [52] T.G. Coursey, J.T. Henriksson, D.C. Marcano, C.S. Shin, L.C. Isenhart, F. Ahmed, C.S. De Paiva, S.C. Pflugfelder, G. Acharya, Dexamethasone nanowafer as an effective therapy for dry eye disease, Journal of Controlled Release 213 (2015) 168-174.
    [53] Y. She, J. Li, B. Xiao, H. Lu, H. Liu, P.A. Simmons, J.G. Vehige, W. Chen, Evaluation of a novel artificial tear in the prevention and treatment of dry eye in an animal model, Journal of Ocular Pharmacology and Therapeutics 31(9) (2015) 525-530.
    [54] V. Kanikireddy, K. Varaprasad, T. Jayaramudu, C. Karthikeyan, R. Sadiku, Carboxymethyl cellulose-based materials for infection control and wound healing: A review, International Journal of Biological Macromolecules (2020).
    [55] İ. Gulcin, Antioxidants and antioxidant methods: An updated overview, Archives of toxicology 94(3) (2020) 651-715.
    [56] M. Anraku, J.M. Gebicki, D. Iohara, H. Tomida, K. Uekama, T. Maruyama, F. Hirayama, M. Otagiri, Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies, Carbohydrate Polymers 199 (2018) 141-149.
    [57] S. Bungau, M.M. Abdel-Daim, D.M. Tit, E. Ghanem, S. Sato, M. Maruyama-Inoue, S. Yamane, K. Kadonosono, Health benefits of polyphenols and carotenoids in age-related eye diseases, Oxidative medicine and cellular longevity 2019 (2019).
    [58] M.A. Alam, C. Sernia, L. Brown, Ferulic acid improves cardiovascular and kidney structure and function in hypertensive rats, Journal of Cardiovascular Pharmacology 61(3) (2013) 240-249.
    [59] D. Li, Y.-x. Rui, S.-d. Guo, F. Luan, R. Liu, N. Zeng, Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives, Life Sciences 284 (2021) 119921.
    [60] S. Zhang, P. Wang, P. Zhao, D. Wang, Y. Zhang, J. Wang, L. Chen, W. Guo, H. Gao, Y. Jiao, Pretreatment of ferulic acid attenuates inflammation and oxidative stress in a rat model of lipopolysaccharide-induced acute respiratory distress syndrome, International journal of immunopathology and pharmacology 31 (2018) 0394632017750518.
    [61] C.-Y. Tsai, L.-C. Woung, J.-C. Yen, P.-C. Tseng, S.-H. Chiou, Y.-J. Sung, K.-T. Liu, Y.-H. Cheng, Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing, Carbohydrate polymers 135 (2016) 308-315.
    [62] D. Mukhopadhyay, P. Dasgupta, D.S. Roy, S. Palchoudhuri, I. Chatterjee, S. Ali, S.G. Dastidar, A sensitive in vitro spectrophotometric hydrogen peroxide scavenging assay using 1, 10-phenanthroline, Free Radicals and Antioxidants 6(1) (2016) 124-132.
    [63] C. Li, K. Fang, W. He, K. Li, Y. Jiang, J. Li, Evaluation of chitosan-ferulic acid microcapsules for sustained drug delivery: Synthesis, characterizations, and release kinetics in vitro, Journal of Molecular Structure 1227 (2021) 129353.
    [64] S. Woranuch, R. Yoksan, Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan, Carbohydrate polymers 96(2) (2013) 495-502.
    [65] H.-Y. Huang, M.-C. Wang, Z.-Y. Chen, W.-Y. Chiu, K.-H. Chen, I.-C. Lin, W.-C.V. Yang, C.-C. Wu, C.-L. Tseng, Gelatin–epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief, International journal of nanomedicine 13 (2018) 7251.
    [66] H. Bao, L. Li, H. Zhang, Influence of cetyltrimethylammonium bromide on physicochemical properties and microstructures of chitosan–TPP nanoparticles in aqueous solutions, Journal of colloid and interface science 328(2) (2008) 270-277.
    [67] S. Bonengel, F. Prüfert, M. Jelkmann, A. Bernkop-Schnürch, Zeta potential changing phosphorylated nanocomplexes for pDNA delivery, International Journal of Pharmaceutics 504(1-2) (2016) 117-124.
    [68] C. He, Y. Hu, L. Yin, C. Tang, C. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles, Biomaterials 31(13) (2010) 3657-3666.
    [69] W.-H. Tsai, K.-H. Yu, Y.-C. Huang, C.-I. Lee, EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles, International journal of nanomedicine 13 (2018) 903.
    [70] P. Zainith, N.K. Mishra, Experimental investigations on stability and viscosity of carboxymethyl cellulose (CMC)-based non-newtonian nanofluids with different nanoparticles with the combination of distilled water, International Journal of Thermophysics 42(10) (2021) 1-21.
    [71] A. Fini, V. Bergamante, G.C. Ceschel, Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity, Pharmaceutics 3(4) (2011) 665-679.
    [72] A. Bendich, L. Machlin, O. Scandurra, G. Burton, D. Wayner, The antioxidant role of vitamin C, Advances in Free Radical Biology & Medicine 2(2) (1986) 419-444.
    [73] D. Palmer, M. Levina, A. Nokhodchi, D. Douroumis, T. Farrell, A. Rajabi-Siahboomi, The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended release matrices, AAPS PharmSciTech 12(3) (2011) 862-871.
    [74] S.-H. Yoon, C. Li, Y.-M. Lee, S.-H. Lee, S.-H. Kim, M.-S. Choi, W.-T. Seo, J.-K. Yang, J.-Y. Kim, S.-W. Kim, Production of vanillin from ferulic acid using recombinant strains ofEscherichia coli, Biotechnology and bioprocess engineering 10(4) (2005) 378-384.
    [75] C. Xiong, D. Chen, J. Liu, B. Liu, N. Li, Y. Zhou, X. Liang, P. Ma, C. Ye, J. Ge, A rabbit dry eye model induced by topical medication of a preservative benzalkonium chloride, Investigative ophthalmology & visual science 49(5) (2008) 1850-1856.
    [76] K. Xie, B. Jin, H. Zhu, P. Zhou, L. Du, X. Jin, Ferulic acid (FA) protects human retinal pigment epithelial cells from H2O2‐induced oxidative injuries, Journal of Cellular and Molecular Medicine 24(22) (2020) 13454-13462.
    [77] M. Kohno, K. Musashi, H.O. Ikeda, T. Horibe, A. Matsumoto, K. Kawakami, Oral administration of ferulic acid or ethyl ferulate attenuates retinal damage in sodium iodate-induced retinal degeneration mice, Scientific reports 10(1) (2020) 1-9.

    無法下載圖示 全文公開日期 2024/09/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE