簡易檢索 / 詳目顯示

研究生: 陳勁志
Chin-Chih Chen
論文名稱: 高濕環境下催化CO氧化之金觸媒製備研究
The preparation of Au catalysts for CO oxidation under high humidity
指導教授: 林昇佃
Shawn D. Lin
口試委員: 劉端祺
Tuan-Chi Liu
陳敬勳
C.S. Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 106
中文關鍵詞: CO氧化金觸媒相對濕度矽烷修飾氮化硼
外文關鍵詞: CO oxidation, Au catalysts, relative humity, silane modification, h-BN
相關次數: 點閱:225下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目標為製備在高濕度及室溫環境下,具有良好催化CO氧化活性且能保持穩定的金觸媒。本實驗使用含浸法製備Au/Al2O3觸媒,並用濕式鹼處理予以活化,即可獲得在室溫下具有良好催化CO氧化活性的觸媒,但當反應進料的相對濕度提升至71%時,Au/Al2O3觸媒活性隨著反應時間降低而致完全失活。研究中嘗試不同矽烷修飾程序對Au/Al2O3觸媒進行改質,發現矽烷改質會導致乾進料反應條件時的活性降低,但活性受到濕度影響程度則有所改善。實驗以不同含量及不同種類的矽烷進行測試,發現丙基矽烷含量較多時可維持高濕環境下的金觸媒活性,在室溫及相對濕度為71%時,仍然可以維持乾進料條件下CO轉化率的50%;含氟矽烷具有更好的耐濕度性,在室溫及相對濕度為100%時,CO轉化率與乾進料條件下相同。TGA分析結果顯示Au/Al2O3觸媒在30分鐘下所能吸附的水氣為3.5wt%且尚未達飽和,但矽烷改質後的金觸媒在吸附水氣30分鐘後已趨於飽和且吸附量降至2.1wt%,證明經由矽烷改質後能有效降低水氣吸附量。達到在室溫及高濕度環境下,有效催化CO氧化活性的研究目的,以疏水性載體氮化硼製作金觸媒的探討部分發現Au/ BN觸媒在乾進料條件時,CO反應轉化率幾乎為零,但在室溫及相對濕度為71%時,CO轉化率有所提升,顯示水氣提升Au/ BN觸媒的反應活性,但在相對濕度達100%時,反應活性又會低於相對濕度71%的反應活性。


    At room temperature, below previous works show that Au catalysts are active for CO oxidation. However, moisture in the surrounding can inhibit catalytic oxidation, which limits the application of Au catalysts. In this study, we prepare active Au catalysts for CO oxidation under high humidity at room temperature. Au catalysts are prepared either by impregnation with a subsequent base activation or by deposition-precipitation. Under 35-71% of relative humidity, the room temperature CO oxidation activity of Au/Al2O3 is significantly suppressed. With silane treated Au/Al2O3, the room temperature CO oxidation activity under dry condition decreases, but the activity prevails under high relative humidity. When treated by TMPS (Trimethoxy(propyl))silane) the Au/Al2O3 can maintain 50% of the dry condition activity under 71% of relative humidity. When treated by TMFPS ((3,3,3-Trifluoropropyl)Trimethoxysilane) the Au/Al2O3-F20.073 can maintain the same dry condition activity under 100% of relative humidity. TGA analysis show that Au/Al2O3 absorb 3.5 wt% of water after 30 min under 100% of relative humidity at room temperature, while Au/Al2O3-F20.073 absorb 2.1 wt% and shows saturated. A second approach, we tried to prepare Au/h-BN where h-BN has hydrophobic property. The Au/BN and Au/com-BN showed no CO oxidation activity under dry condition. However under 71% of relative humidity, both catalysts show enhanced activity.

    中文摘要 英文摘要 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 文獻回顧 1.2.1 金觸媒製備方法對於催化CO氧化活性影響 1.2.2 水氣對於金觸媒催化CO氧化活性影響 1.2.3 水氣對於金觸媒催化CO氧化機制影響 1.2.4 觸媒親疏水性的調整 1.2.5 疏水性及親水性擔體 1.3 研究目的與方法 第二章 實驗方法 2.1 藥品與氣體 2.2 實驗儀器 2.3觸媒的製備(1wt% Au 觸媒) 2.3.1 氧化鋁擔體的前處理 2.3.2 Hexagonal boron nitride 製備 2.3.3 臨濕含浸法製備1 wt% Au/Al2O3觸媒 2.3.4 臨濕含浸法製備1 wt% Au/BN與Au/com-BN觸媒 2.3.5 沉澱法製備1 wt% Au/BN與Au/com-BN觸媒 2.3.6 矽烷改質含浸法製備之金觸媒 2.3.7 鹼溶液活化含浸法製備之金觸媒 2.4 觸媒特性分析 20 2.4.1 感應耦合電漿原子放射光譜儀(ICP)、離子層析儀(IC) 2.4.2 DRS UV/Vis 分析 2.4.3 表面積及孔隙測定儀 2.4.4 穿透式電子顯微鏡分析 2.4.5 X-ray powder diffraction 2.4.6 元素分析儀 2.4.7 表面紅外光譜儀分析 2.4.8 TGA及水氣吸附分析 2.5 反應測試 2.6 反應活性分析方法 第三章 結果與討論 3.1 NH4OH處理對Al2O3與IMP觸媒的影響 3.1.1 NH4OH處理對IMP觸媒的CO反應影響 3.1.2 NH4OH處理金觸媒之特性分析 3.2 矽烷改質對Au/Al2O3觸媒的影響 3.2.1 丙基矽烷(TMPS)處理對Au/Al2O3觸媒催化CO反應影響 3.2.2 丙基矽烷(TMPS)含量對Au/Al2O3-Px觸媒催化CO反應影響 3.2.3 含氟矽烷(TMFPS)處理對Au/Al2O3觸媒催化CO反應影響 3.2.4 矽烷改質金觸媒之特性分析 3.3 製備參數對h-BN及商購h-BN影響 3.3.1 商購h-BN及自製h-BN之特性鑑定 3.3.1.1 元素分析(EA) 3.3.1.2 XRD及TEM分析 3.3.1.3 BET分析 3.4 Au/BN及Au/com-BN觸媒對於催化CO轉化率影響 3.4.1 製備方式對於Au/BN觸媒催化CO反應影響 3.4.2 水氣對於Au/BN觸媒催化CO反應影響 3.4.3 製備Au/BN及Au/com-BN之特性鑑定 3.5矽烷改質Au/Al2O3及Au/ BN (DP)觸媒之反應特性比較 第四章 結論 參考文獻 附錄 附錄A 附錄B 附錄C 附錄D

    1.M. Haruta, A. Ueda, S. Tsubota, T Kobayashi, H Sakurai and M. Ando, Proc. 1st. Japan-EC Joint Workshop on the Frontiers of catal. Sci. Techn., Dec. 1991, Tokyo, p.173 (1991).
    2.M. Haruta, T. Takase, T Kobayashi and S. Tsubota, Catal. Sci. Techn., 1, 331, (1991).
    3.M. Haruta, S. Tsubota and T Kobayashi, 3rd. Inter. DRA/NATA Confer. On Long-Life O2 Laser Techn., Nov. 1992, Ikeda, p.72 (1992).
    4.M. Haruta, S. Tsubota and T. Tessuhiko, H Kageyama, M. J. Genet and B. Delmon, J. Catal., 144, 175, (1993).
    5.Hoflund G. B., Gardner S. D., Upchurch B. T., Schryer D. R., Kielin E. J., and Schryer J., J. Catal., 129, 114, (1991).
    6.Hoflund G. B., Gardner S. D., Upchurch B. T., Schryer D. R., and Kielin E. J., Appl. Catal. B: Environ., 6, 117, (1995).
    7.Schryer D. R., Upchurch B. T., and Kielin E. J., Langmuir, 11, 3431, (1995).
    8.M. Haruta, Catal. Today, 36, 153, (1997).
    9.M. Haruta, CATTECH, 6, 102, (2002).
    10.M. Haruta, Gold Ball, 37, 27, (2004).
    11.M. Haruta, in The Physics and Chemistry of Clusters, 2001, E.E.B Campbell and M. Larsson (ed), p99, World Scientific Publ.
    12.Y. A. Nechayev and G. V. Zvonareva, Geokimiya, 6, 919, (1983)
    13.S. D. Lin, M. Bollinger, and M. A. Vannice, Catal. Lett., 17, 245, (1993).
    14.M. A. Bollinger and M. A. Vannice, Appl. Catal. B: Environ., 8, 417-443, (1996).
    15.A. M. Ribeiro, T. P. Sauer, C. A. Grande, R. F. P. M. Moreira, J. M. Loureiro, and A. E. Rodrigues, Ind. Eng. Chem. Res. 2008, 47, 7019–7026
    16.E. D. Park and J. S. Lee, Journal of Catalysis 186, 1–11 (1999).
    17.M. Date and M. Haruta, J. Catal., 201, 221-224, (2001).
    18.J. T. Calla and R. J. Davis, Ind. Eng. Chem. Res. 2005, 44, 5403-5410.
    19.C. Liu, Y. Tan, S. Lin, H. Li, X. Wu, L. Li, Y. Pei and X. C. Zeng, J. Am. Chem. Soc. 2013, 135, 2583−2595.
    20.C. T. Rettner, J. Chem. Phys. 101, 1529 (1994).
    21.M. C. Kung, R. J. Davis, and H. H. Kung, J. Phys. Chem. C 2007, 111, 11767-11775.
    22.G. C. Bond and D. T. Thompson, GoldBulletin2000, 33(2).
    23.B. Arkles, CHEMTECH, 7, 766, 1977.
    24.Y. C. Yang, S. B. Jeong, B. G. Kim, P. R. Yoon, Powder Technology 191 (2009) 117-121.
    25.T. Jesionowski, A. Krysztafkiewicz, Applied Surface Science 172 (2001) 18-32.
    26.J. T. Han, S. Y. Kim, H. J. Jeong, and G. W. Lee, Ind. Eng. Chem. Res. 2009, 48, 6303–6307.
    27.A. Saha, H. L. Castricumb, A. Bliekb, D.H.A. Blanka, J.E. ten Elshofa, Journal of Membrane Science 243 (2004) 125–132.
    28.林彥德,”Au/C觸媒製備條件對CO+O2反應催化活性的影響”,元智大學,碩士論文(2009).
    29.G. Postole, A. Gervasini, M. Caldararu, B. Bonnetot, A. Auroux, Applied Catalysis A: General 325 (2007) 227–236.
    30.J. Q. Bi, W. L. Wang, Y. X. Qi, Y. J. Bai, L. L. Pang, H. L. Zhu, Y. Zhao, Y. Wang, Materials Letters 63 (2009) 1299–1302.
    31.G. Postole, A. Gervasini, M. Caldararu, B. Bonnetot, A. Auroux, Applied Catalysis A: General 325 (2007) 227–236.
    32.J. Li, J. Lin, X. Xu, X. Zhang, Y. Xue, J. Mi, Z. Mo, Y. Fan, L. Hu, X. Yang, J. Zhang, F. Meng, S. Yuan and C. Tang, Nanotechnology 24 (2013), 155603 (7pp)
    33.C. H. Lee, J. Drelich and Y. K. Yap, Langmuir 25(9), (2009), 4853-4860.
    34.C. S. Wu, Y. C. Fan and C. A. Lin, Ind. Eng. Chem. Res. 2003, 42, 3225-3229.
    35.C. S. Wu, Z. A. Lin, J. W. Pan, M. H. Rei, Applied Catalysis A: General 219 (2001) 117–124.
    36.Stuart H. Taylor, Ashleigh J.J. Pollard, Catalysis Today 81 (2003) 179–188.
    37.L. Lin, Z. Li, Y. Z. and K. Wei, J. Am. Ceram. Soc., 92 (6) 1347–1349 (2009).
    38.李浩銓等, Air Conditioning Technology Part 76 pp. 22-23, 2002.
    39.F. Zucchi, V. Grassi, A. Frignani, G. Trabanelli, C. Monticelli, Materials Chemistry and Physics 103 (2007) 340–344.
    40.林智慧, ”鹼處理對Au/Al2O3觸媒的結構與CO氧化活性的影響” ,元智大學,碩士論文(2002).
    41.蔡欣諺, ”活化條件對含浸法製備Au觸媒在CO+O2及NO+CO反應活性影響” ,元智大學,碩士論文(2005).
    42.R. J. H. Grisel and B. E. Nieuwenhuys, Journal of Catalysis 199, 48–59 (2001)
    43.K. S. W. SING, D. H. EVERETT, R. A. W. HAUL, L. MOSCOU, R. A. PIEROTTI, J. ROUQUEROL, T. SIEMIENIEWSKA, Pure & Appl. Chem., Vol. 57, No. 4, pp. 603—619, 1985.
    44.A. I. Frenkel, C. W. Hills, R. G. Nuzzo, The Journal of Physical Chemistry B 2001, 105, 12689-12703.

    QR CODE