簡易檢索 / 詳目顯示

研究生: 林孟頡
Meng-jye Lin
論文名稱: 以環形熱壓轉印技術開發生物可降解支架
Fabrication of biodegradable stent by circular thermal imprint
指導教授: 張復瑜
Fuh-yu Chang
口試委員: 鄭正元
Jeng-ywan Jeng
鍾俊輝
Chun-hui Chung
陳嘉元
Chia-Yuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 98
中文關鍵詞: 環形轉印生物可降解支架有限體積法(FVM)
外文關鍵詞: Circular imprint, biodegradable stent, finite volume method
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚乳酸(polylactic acid,PLA)是目前被廣泛使用的生醫材料,其中包括手術縫線、心血管支架(stent)、組織工程支架(scaffolds)、和藥物傳輸裝置等。PLA其生物可降解性及製造來源已受到許多的關注,對今日醫療技術有著重要的地位。本研究開發一特殊環形轉印系統及製造方法製作PLA心血管支架,由於環形轉印中往往遇到脫模步驟時產生負拔模角問題,本研究將模具透過分為數塊以及將對單一結構經特殊設計而使各拔模角由負拔模角轉成正拔模角,成功解決了製程中脫模的問題。
    本實驗更利用商用Computational fluid dynamics (CFD),在有限體積法(Finite volume method, FVM)的基礎下模擬PLA材料於環型模具中模穴填充之行為,進而判斷模擬與實驗之差異程度,找出最佳化填充參數。最後利用特殊模具以環形轉印製作出之支架將與模擬做一交叉比對探討。
    本研究以環形轉印系統成功轉印出直徑10 mm、厚度0.7 mm之心血管支架,由實驗結果得到在壓印時間60秒、轉印溫度110 oC及轉印壓力0.4 MPa具有最佳的填充率。此環形轉印製程相較於傳統雷射切割支架,不僅有效地降低了製程時間,對於目前心血管和非心血管的生物可降解支架在製程及量產上,具有一定的貢獻及突破。


    Polylactide (PLA) is currently used in a number of biomedical tools, including sutures, stents, scaffolds, and drug delivery devices. PLA is a widely used polymer for biomedical devices which has received much attention for its biodegradability and origin in renewable resources.
    This research developed a circular imprint system and the manufacturing method for PLA stent fabrication. A special designed circular mold and imprint system were employed to manufacture stent structure. The special designed circular mold was divided into several parts for the purpose of demolding easily. It makes draft angle from negative to positive when we carry out a circular imprint process. In addition, commercial computational fluid dynamics software based on the finite volume method (FVM) was used for simulating the material filling behavior and optimizing the imprint process. Finally, PLA stents were fabricated using the circular imprint process with the special design mold and the experimental results were compared with the simulation.
     The developed circular imprint system has successfully been used to fabricate PLA stents with dimensions of diameter 10 mm and thickness 0.7 mm. the results show the stent structures can be full filled with the process parameters of imprint time 60 sec, imprint temperature 110 oC and imprint pressure 0.4 MPa. This circular imprint process can efficaciously reduce the processing time comparing to laser cutting process which is used to fabricate biodegradable stents currently. This study contributes to the fabrication and mass production of biodegradable vascular and non-vascular polymer stents.

    摘要 I Abstract III 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3論文架構 2 第二章 文獻回顧 4 2.1聚乳酸高分子簡介 4 2.2 聚乳酸特性 4 2.2.1光學活性 5 2.2.2分子量 7 2.2.3結晶性 7 2.2.4機械性質 8 2.2.5生物可降解性質 10 2.3微/奈米轉印技術 11 2.4 血管支架(Stents)簡介 14 2.4.1可降解支架製備相關方法 15 第三章 數值模擬 20 3.1數值模擬控制方程 21 3.1.1流體連續方程式[41-45] 22 3.1.2 動量守恆方程式[41-45] 22 3.1.3 流體體積法及自由液面效應[46-48] 24 3.2 模擬模型設置 26 3.2.1 邊界條件 27 3.2.2 收斂性條件 28 3.3 數值模擬成形分析規劃 29 3.3.1 填充速度與模仁受壓力之PLA成形性 29 3.3.2 溫度效應 29 3.3.3 轉印壓力效應 30 3.4 PLA支架性質模擬 30 3.4.1 建立有限元素模型 31 3.4.2 PLA支架徑向壓縮測試方法 32 3.4.3 模擬模型網格驗證 35 第四章、實驗規劃 38 4.1 環狀熱壓轉印設備設計及製作 39 4.1.1環狀熱壓轉印設備 39 4.1.2 壓力驗證 41 4.1.3加熱系統 43 4.1.4夾爪設計 44 4.1.5模具設計 45 4.2材料及實驗製備 50 4.2.1微/奈米轉印機台 50 4.2.2 材料性質 51 4.2.3片材製作 53 4.2.4 黏度量測 54 4.2.5模具 54 4.2.6熱壓轉印流程 55 4.3 實驗規劃 58 4.3.1 溫度測試 58 4.3.2 轉印時間測試 59 4.3.3 壓力測試 60 4.3.4 填充率定義 60 4.3.5 支架強度檢測 61 4.4 量測儀器 61 4.4.1 掃描式電子顯微鏡(Scanning electron microscope, SEM) 61 4.4.2廣角度X-ray繞射儀 (Wide-angle X-ray Diffraction, WAXD) 62 4.4.3光學顯微鏡 (Optical Microscope, OM) 63 4.4.4 Z軸量測平台 64 4.4.5 廻轉式動態流變儀(Modular Compact Rheometer) 64 第五章 模擬與實驗結果分析 66 5.1環形熱壓成形模擬結果分析 67 5.1.1 填充速度與模仁受壓力之成型性 67 5.1.2 溫度效應 69 5.1.3 時間效應 71 5.1.4 壓力效應 72 5.2 環形熱壓PLA支架結果與分析 76 5.2.1 溫度測試結果 76 5.2.2 轉印時間測試結果 78 5.2.3 轉印壓力測試結果 80 5.3 環形熱壓成形數值模擬與實驗結果討論 82 5.4 支架徑向強度模擬結果分析 87 5.5支架徑向強度測量結果分析 88 5.6 支架徑向強度數值模擬與實驗結果討論 89 第六章 結論與未來展望 91 6.1 結論 91 6.2未來展望 92 參考文獻 94

    1. 蔡璨鴻, “應用熱壓轉印技術於聚乳酸高分子微奈米結構製作之製程研究” , 國立台灣科技大學碩士論文, 2012。
    2. A. K. Schneider, “Polymers of high melting lactide”, U.S. Patent, NO.2703316, 1955.
    3. O. Tatsuro, M. Tetsuji, O. Yuichi, “Synthesis of poly(L-lactide)-grafted pullulan through coupling reaction between amino group end-capped poly(L-lactide) and carboxymethyl pullulan and its aggregation behavior in water”, Journal of Polymer Science, Part A, Vol.42, pp.5482-5487, 2004.
    4. H. S. Kim ,M. O. Hwang, M. N. Kim, J. S. Yoon, “Preparation of high-molecular-weight poly(L-lactic acid)-based polymers through direct condensation polymerization in bulk state”, Journal of Applied Polymer Science, Part A, Vol.100, pp.466-472, 2006.
    5. N. A. Higgins, “Condensation polymers of hydroxyacetic acid”, U.S. Patent, NO.2676945,1982.
    6. J. W. Leenslag, “Poly(L-lactide) and its biomedical applications”, PhD. Thesis, University of Groningen, The Netherlands,1982.
    7. H. J. Lehermeier., J. R. Dorgan, J. D. Way, “Gas permeation properties of poly(lactic acid)”, Journal of Membrane Science, Vol.190 , pp.243-251, 2001.
    8. J. C. Bogaert, P. Coszach, “Poly(lactic acids): a potential solution to plastic waste dilemma”, Macromolecular Symposia,Vol.153, pp.287-303, 2000.
    9. R. Jain, N. H. Shah, A. W. Malick, C. T. Rhodes, “Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches”, Drug Development and Industrial Pharmacy,Vol.24, pp.703-727, 1998.
    10. D. Hutmacher, M. Hurzeler, H. Schliephake, “A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications”, The International Journal of Oral & Maxillofacial Implants, Vol.11, pp.667-678, 1996.
    11. S. H. Hyon, K. Jamshidi, Y. Ikada, “Synthesis of polylactides with different molecular weights”, Biomateriols,Vol.18,pp.1503-1508, 1997.
    12. K. Jamshidi, S. H. Hyon, Y. Ikada, “Thermal characterization of polylactides’’, Polymer,Vol.29,pp.2229-2234,1988.
    13. D. Cam, S. H. Hyon, Y. Ikada , “Degradation of high molecular weight poly(L-lactide) in alkaline medium”,Biomaterials,Vol.16, pp.833-843,1995.
    14. T. R. Tice, D. R. Cowsar, “Biodegradable controlled release parenteral systems’’.Pharmacol. Technol. J. ,Vol.8,pp.26-31,1984.
    15. J. Rak, J. L. Ford, C. Rostron, V. Walters, “The preparation and characterization of poly(D,L-lactic acid) for use as a biodegradable drug carrier”, Pharm. Acta Helv.,Vol.60,pp.162-169,1985.
    16. X. S. Wu, “Encyclopedic handbook biomaterials and bioengineering”,Marcel Dekker,Inc,pp.5430-1200,1995.
    17. H. Tsuji, Y. Ikada, “Properties and morphologies of poly(L-lactide):1.Annealing condition effects on properties and morphologies of poly(L-lactide)”, Polymer, Vol. 36, pp. 2709-2716, 1995.
    18. H. Tsuji, A. Mizuno, Y. Ikada, “Properties and Morphology of Poly(L-lactide). III. Effects of Initial Crystallinity on Long-Term In Vitro Hydrolysis of High Molecular Weight Poly(L-lactide) Film in Phosphate-Buffered Solution”, Journal of Applied Polymer Science, Vol.77, pp.1452-1464, 1999.
    19. H. Tsuji, Y. Ikada, “Properties and morphology of poly(l-lactide) effects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution”, Polymer Degradation and Stability, Vol.67, pp.179-189, 2000.
    20. S. D. Park, M. Todo, K. Arakawa, “Effects of isothermal crystallization on fracture toughness and crack growth behavior of poly (lactic acid)”, Journal of Materials Science,Vol.40, pp.1055-1058, 2005.
    21. 任杰,“可降解與吸收材料” ,化學工業出版社,2003。
    22. H. Tsuji, S. Miyauchi, “Poly(l-lactide): enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) films with different crystallinities and a fixed”, Polymer,Vol.42, pp.4463-4467, 2001.
    23. S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Nanoimprint lithography”,Journal of Vacuum Science &Technology B,Vol.14, pp. 4129–4133, 1997.
    24. M. Heckele, W. Bacher, K. D. Muller, “Hot embossing – The molding technique for plastic micro structures”, Microsystem Technologies,Vol.4, pp.122-124, 1998.
    25. J. L. Charest, L. E. Bryant, A. J. Garcia, W. P. King, “Hot embossing for micropatterned cell substrates”, Biomaterials,Vol.25, pp.4767-4775, 2004.
    26. Y. ITO, H. HASUDA, M. MORIMATSU , N. TAKAGI and Y. HIRAI, “ A microfabrication method of a biodegradable polymer chip for a controlled release system’’J. Biomater. Sci. Polymer Edn, Vol. 16, No. 8, pp. 949–955,2005.
    27. C. A. Mills, M. Navarro, E. Enge, E. Martinez, M. P. Ginebra, J. Planell, A. Errachid, J. Samitier, “Transparent micro- and nanopatterned poly(lactic acid) for biomedical applications”, Journal of Biomedical Materials Research Part A, Vol.76, pp.781-787, 2006.
    28. C. A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J. Samitier, A. Errachid, “Production of structures for microfluidics using polymer imprint techniques”, Microelectronic Engineering, Vol.78-79, pp.695-700, 2005.
    29. Y. Hirai, M. Fujiwara , T. Okuno, Y. Tanaka,“Study of the resist deformation in Nanoimprint lithography”, J.Vac.,Sci. Technol. B, Vol. 19,No.6, 2001.
    30. Y. Hirai, T. Konishi, T. Yoshikawa, S. Yoshida, “Simulation and experimental study of polymer deformation in nanoimprint lithography ”. J. Vac. Sci. Technol. B ,Vol.22, No.6,pp.3289-3293, 2004 .
    31. W. B. Young, “Analysis of the Nanoimprint Lithography with a Viscous Model”, Microelectronic Engineering, Vol. 77, 2005, pp.405-411.
    32. 林耘緯,“快速熱壓轉印製程模擬及實驗研究’’ ,國立台灣科技大學碩士論文,2012。
    33. J. K. Michael, W. S. Patrick, “Coronary Stenting-Current Perspectives A Companion to the Handbook of Coronary Stents”, Martin Dunitz Ltd, London,1990.
    34. N. Grabow, C. M. Bunger , K. Sternberg , S. Mews , K. Schmohl, K. P. Schmitz,“ Mechanical Properties of a Biodegradable Balloon-expandable Stent From Poly(L-lactide) for Peripheral Vascular Applications’’,Journal of Medical Devices,Vol.1,pp.84-88,2007.
    35. N. Grabow, M. schlum, K. sternberg, N. Hakansson, S. kramer, K. P. Schmitz,“Mechanical Properties of Laser Cut Poly(L-Lactide) Micro-Specimens: Implications for Stent Design, Manufacture, and Sterilization’’, Journal of Biomechanical Engineering,Vol.127,pp.25-31,2005.
    36. S. H. Su, et al., “Expandable bioresorbable endovascular stent. I.
    Fabrication and properties” Annals of Biomedical Engineering, Vol.31, pp. 667-77, 2003.
    37. 姜富均, “生物可降解式心血管支架支研究與開發, ”長庚大學碩士論文,2009。
    38. S. Venkatraman, et al., “ Collapse pressures of biodegradable
    stents ” Biomaterials, Vol.24, pp. 2105-2111, 2003.
    39. A. Lafont, S. Li, H. Garreau, F. Cornhill, M. Vert, “ PLA Stereocopolymers as Sources of Bioresorbable Stents:Preliminary Investigation in Rabbit ”, 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 77B: pp.349–356, 2006.
    40. M. C. Chen, H.W. Tsai, Y. Chang, W.Y. Lai, F.L. Mi., C.T. Liu, H.S. Wong, H.W. Sung, “ Rapidly Self-Expandable Polymeric Stents with Shape-MemoryProperty’’,Biomacromolecules,Vol.8,pp.2774-2780,2007.
    41. S. C. Jang, C. C. Tseng, L. J. Chang, C. F. Chang, W. J. Lee, C. J. Huang, C. T. Liu, “Glass forming ability and thermal properties of the Mg-based amorphous alloys with dual rare earth elements addition”, Materials transactions, Vol.48, pp.1684-1688, 2007.
    42. 韓占忠,王敬,蘭小平, “流體工程仿真計算實例與應用’’,北京理工大學出版社,No.4, 2007。
    43. 朱紅鈞,林元華,謝龍漢, “流體分析及仿真實用教程’’ ,人民郵電出版社,No.1,2010。
    44. 李進良,李承曦,胡仁喜, “精通流場分析’’,No.1,2010。
    45. 呂英嘉,“次微米級玻璃結構直接壓印成形之理論分析與實驗研究’’ ,國立清華大學碩士論文,2008。
    46. C. W. Hirt, B. D. Nichols, “Volume of Fluid (VOF) method for the dynamics of free boundaries”, J. of Computational Phy, Vol.39, pp.201-225, 1981.
    47. 魏妙珊,“三維海嘯湧潮對近岸結構物之影響,國立中央大學碩士論文,2009。
    48. 薛進德,“船用柴油機單一油孔噴油器模擬黏度對流場影響之研究’’,國立高雄海洋科技大學碩士論文,2008。
    49. Tekscan [ http://www.tekscan.com/]

    無法下載圖示 全文公開日期 2018/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE