簡易檢索 / 詳目顯示

研究生: 莊沅隴
Yuan-Long Zhuang
論文名稱: 壓電纖維之振動特性與應用於流體致振之評估
Vibration Characteristic of Piezoelectric Fiber Strip and Evaluation Applied on Flow Induced Vibration
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 趙振綱
Ching-Kong Chao
許清閔
Ching-Min Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 147
中文關鍵詞: 三維流場巨集型壓電纖維平板流固耦合振動特性電子斑點干涉術雷射都卜勒振動儀(LDV)有限體積法共振頻率振動模態
外文關鍵詞: three dimentional flow field, macro fiber composite piezoelectric strip, front structure design, solid-liquid coupling vibration characteristics, laser doppler vibrometer (LDV), finite volume method, vibration displacement
相關次數: 點閱:268下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討巨集型壓電纖維平板於水中、空氣中元件之結構耦合三維流場並造成結構振動的量測與模擬分析,結構利用壓克力圓管以不同幾何外型設計使流場產生渦流擾動,透過多種實驗量測及計算流體力學之數值模擬的研究方法得知巨集型壓電纖維平板於不同流體介質、不同邊界條件和不同前端幾何設計作動的共振頻率及共振模態。研究主要探討巨集型壓電纖維平板在與空氣和水耦合作動下影響的流固耦合振動特性,並配合不同流速大小的三維流場進行比較,幾何設計利用壓克力圓管複合巨集型壓電纖維平板以固定邊界的形式,透過前端壓克力圓管的設計使流場產生渦流振動,進而讓巨集型壓電纖維平板產生振動。本研究之壓電元件與流體耦合的振動特性使用兩種量測設備進行實驗量測,包括全域式電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI),同時對巨集型壓電纖維平板於流體中的面外振動模態進行即時量測,並紀錄與流體耦合作用下的共振頻率與振動模態。雷射都卜勒振動儀(Laser Doppler Vibrometer, LDV)以單點量測壓電材料與空氣耦合的面外振動位移,並可使用穩態掃頻的方式獲得面外共振頻率。鋼珠落擊,以鋼珠敲擊單邊固定之巨集型壓電纖維平板,使用LDV將變化紀錄訊號後再利用Matlab程式進行快速傅立葉轉換(Fast Fourier Transform, FFT),得到結構共振頻率。本研究對巨集型壓電纖維平板耦合不同流體的振動特性進行研究,將結構自然共振頻率之實驗量測結果與流固耦合的有限體積數值計算進行分析比較,無論在共振頻率或振動模態皆可相互對應,對於壓電材料的動態特性於實驗量測與數值分析皆進行比較,成功獲得壓電元件於流體內的振動特性。最後,分析高低流速下的流體致振機制,本研究運用流場可視化的實驗裝置,將低流速下的流場粒子流經結構邊界層時的動態特性拍攝記錄,並運用數值模擬的方法將流速流線(streamline)圖與之對應,分析流場在高低流速下的渦旋(vortex)產生原理,並將結果進行分析和討論。


    The flow induced vibration characteristics of macro fiber composite piezoelectric strip was investigated on energy harvester. We design the different geometric structure, to produce three dimentional flow field appearing the vortex-induced vibration. Experimental measurements and finite volume numerical calculations were used to determine the resonant frequencies and mode shapes for macro fiber composite piezoelectric strip, which could be used to be piezoelectric vibrators of energy harvester in the fluids of air and water. Varying different velocity of three dimensional flow field were designed to verify the solid-liquid coupled vibrations of piezoelectric elements bonded to acrylic structure under fix-end boundary. Two experimental techniques were used to determine the solid-liquid coupled vibration characteristics. Electric speckle pattern interferometry (ESPI) was used to measure the resonant frequencies and mode shapes associated with out-of-plane vibrations of macro fiber composite piezoelectric strip interacting with fluids. Second, a laser Doppler vibrometer (LDV) was used to obtain the frequency spectrum of vibrating displacement using dynamic signal swept-sine analysis. The vibration coupling characteristics of macro fiber composite piezoelectric strip coupled with different fluids were determined by finite volume numerical calculation and the results were verified with experimental measurements. In this fluid-structure coupled system, the dynamic characteristics of the macro fiber composite piezoelectric materials have a good consistence between experimental and numerical results. Finally, we analyze the flow induced vibration mechanism at high and low flow rate. In this study, the flow visualization experimental device was used to record the dynamic characteristics of the flow particles flowing through the structural boundary layer at low flow rate. The experimental result corresponds with the velocity streamline diagram by numerical simulation method. We observe the principle of vorterx generation in the flow field at high and low flow rates and the results are also discussed.

    中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIV 符號索引 XV 第一章 緒論 1 1.1 研究背景 1 1.2文獻回顧 4 1.3內容介紹 11 第二章 壓電與流固耦合基本理論與實驗儀器介紹 13 2.1壓電基本理論 13 2.2壓電材料常數 17 2.3流固耦合分析方法 19 2.3.1流體力學基本統御方程式介紹 19 2.3.2有限體積法的離散控制方程式 29 2.4電子斑點干涉術 37 2.4.1 面外振動量測 38 2.5雷射都卜勒振動儀(Laser Doppler Vibrometer , LDV) 43 第三章 巨集型壓電纖維平板單邊固定邊界之三維振動特性 45 3.1巨集型壓電壓電纖維複層材料簡介 45 3.1.1試片介紹 45 3.1.1.1 P1型MFC 46 3.1.1.2 P2型MFC 47 3.1.1.2 F1型MFC 48 3.1.2 d31效應之理論模型 48 3.1.3 d33效應之理論模型 49 3.2巨集型壓電纖維平板振動特性分析實驗方法與量測步驟 52 3.3數值分析 55 3.3.1 ANSYS-ACP模組介紹 55 3.3.2 巨集型壓電纖維平板建模方法 55 3.3.3邊界設定與分析設定 59 3.4 單邊固定邊界下巨集型壓電纖維平板的空氣耦合振動特性實驗量測結果與數值模擬結果比較 60 3.5單邊固定平板之P1型巨集型壓電纖維平板複合壓克力圓管於空氣耦合的振動特性實驗量測結果與數值模擬結果比較 62 3.6壓克力圓管單邊固定邊界下P2型巨集型壓電纖維平板於水耦合和空氣耦合的振動特性實驗量測結果與數值模擬結果比較 64 3.6.1空氣介質耦合振動特性量測結果 65 3.6.2水介質耦合振動特性量測結果 65 第四章 三維流固耦合的流場與結構模擬分析 84 4.1渦流引起振動(vortex-induced vibration) 85 4.1.1商用計算流體力學軟體Fluent簡介 86 4.1.2 制定Fluent分析方案 87 4.1.3 Fluent求解步驟 87 4.2 單向流固耦合模擬結果 107 4.2.1 蒲福風級簡介 109 4.2.2單邊固定壓克力圓管複合MFC-P2平板單向流固耦合位移結果 110 4.2.3單邊固定MFC-P2平板複合壓克力圓管單向流固耦合位移結果 111 4.3 單邊固定壓克力圓管複合MFC-P2平板之低速流場之實驗以及模擬結果 113 4.4討論 114 第五章 結論與未來工作 141 5.1本文研究結果 141 5.2未來工作 142 參考文獻 144

    [1] Curie J., and Curie P., “Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined Faces,” Bull. Soc. Min de France, 3, pp. 90-102, 1880.

    [2] Jaffe B., Roth R.S., and Marzullo S., “Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics,” J. Appl. Phys., 25(6), pp. 809-810, 1954.

    [3] Heywang W., Lubitz K. and Wersing W., Piezoelectricity-evolution and future of a technology. Springer, 2008.

    [4] “陶瓷技術手冊” ,經濟部技術處發行,中華民國產業科技發展協會與中華民國粉末冶金協會出版(1994/07)

    [5] Smits J. G. and Choi W. S., “The Constituent Equations of Piezoelectric Heterogeneous Bimorphs,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 38(3), pp. 256-270, 1991.

    [6] Lloyd P. and Redwood M., “Finite-difference method for the investigation of the vibrations of solids and the equivalent-circuit characteristics of piezoelectric resonators, Parts I and II,” J. Acoust. Soc. Am., 39, pp. 346-361, 1966.

    [7] Tzou H.S., Piezoelectric shells: distributed sensing and control of continua. Kluwer Academic Publishers, 1993.

    [8] Huang Y. H., and Ma C. C., “Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(4), pp. 785-798, 2012.

    [9] Tiersten, H.F., Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969.

    [10] IEEE standard on piezoelectricity. IEEE Ultrasonics Ferroelectrics and Frequency Control Society, ANSI/IEEE Std 176-1987.

    [11] Butters J.N. and Leendertz J.A., “Speckle pattern and holographic techniques in engineering metrology,” Optics and Laser Technology, 3(1), pp. 26-30, 1971.

    [12] Hgmoen K. and Lkberg O.J., “Detection and measurement of small vibrations using electronic speckle pattern interferometry,” Applied Optics, 16(7), pp. 1869-1875, 1977.

    [13] Wykes C., “Use of electronic speckle pattern interferometry/ESPI/ in the measurement of static and dynamic surface displacements,” Optical Engineering, 21, pp.400-406, 1982.

    [14] Nakadate S., Saito H. and Nakajima T., “Vibration measurement using phase-shifting stroboscopic holographic interferometry,” Journal of Modern Optics, 33(10), pp. 1295-1309, 1986.

    [15] Wang W.C., Hwang C.H. and Lin S.Y., “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods,” Applied Optics, 35,(22), pp.4502-4509, 1996.

    [16] Ma C.C. and Huang C.H., “Experimental and numerical analysis of vibrating cracked plates at resonant frequencies,” Experimental Mechanics, 41(1), pp.8-18, 2001.

    [17] Ma C.C. and Huang C.H., “Experimental full field investigations of resonant vibrations for piezoceramic plates by an optical interferometry method,” Experimental Mechanics, 42(2), pp.140-146, 2002.

    [18] Ma C.C. and Lin Y.C., “Resonant vibration of piezoceramic plates in fluid,” Interaction and Multiscale Mechanics, 1(2), pp.177-190, 2008.

    [19] Ma C.C., Lin H.Y., Lin Y.C. and Huang Y.H., “Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminates composite plate,” Journal of the Acoustical Society of America, 119(3), pp.1476-1486, 2006.

    [20] Smart Material Corp. http://www.smart-material.com/index.html

    [21] Massachusetts Institute of Technology-MIT. htttp://web.mit.edu

    [22] Bent, A. A., Hagood, N. W., and Rodgers, J. P., “Anisotropic Actuation with Piezoelectric Fiber Composites,” Journal of Intelligent Material Systems and Structures, Vol. 6, May 1995.

    [23] Bent, A. A., Hagood, N. W., and Rodgers, J. P., “Anisotropic Actuation with Piezoelectric Fiber Composites,” Presented at the Fourth International Conference on Adaptive Structures, Nov. 2-4, 1993, Cologne, Federal Republic of Germany.

    [24] Bent, A. A., Hagood, N. W., “Development of Piezoelectric Fiber Composites for Structural Actuation,” AIAA Paper No. 93-1717-CP, 〖34〗^th AIAA/ASME/ASCE/AH SDM conference, La Jolla, CA, April 1993, pp3625-3638.

    [25] Bent, A. A., “Piezoelectric Fiber Composites for Structural Actuation,” Master of Science Thesis, Massachusetts Institute of Technology, Janauary 1994.

    [26] Bent, A. A., “Active Fiber Composites for Structural Actuation,” Doctor of Philosophy Dissertation, Massachusetts Institute of Technology, January 1997.

    [27] Janos, B. Z. and Hagood, N. W., “Overview of Active Fiber Composites Technologies,” Proceedings of the 6^th International Conference on New Actuators-ACTUATOR 98, June 98, Bremen, Germany.

    [28] Robert Brett Williams, Dr. Daniel J. Inman, “Nonlinear Mechanical and Actuation Characterization of Piezoceramic Fiber Composites,” Dissertation submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering, March 22, 2004, Blacksburg, Virginia.

    [29] A. Deraemaeker, H. Nasser, A. Benjeddou, and A. Preumont, “Mixing rules for the piezoelectric properties of Macro Fiber Composites(MFC),” Active Structures Laboratory, ULB, 50 av. Franklin Roosevelt, CP 165/42, 1050 Brussels, Belgium, June 2009.

    [30] Christopher Rhys Bowen, Peter F. Giddings, Aki I. T. Salo, and Hyunsun Alicia Kim, “Modeling and Characterization of Piezoelectrically Actuated Bistable Conposites,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 9, September 2011.

    [31] Suna Ju, Chang-Hyeon Ji, “Impact-based piezoelectric vibration energy harvester,” Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, Republic of Korea, January 2018.

    [32] Jayant Sirohi, Rohan Mahadik, “Piezoelectric wind energy harvester for low-power sensors,” Journal of Intelligent Material Systems and Structures 22(18) 2215-2228.

    [33] Wei Ken Chin, Zhi Chao Ong, Keen Kuan Kong, Shin Yee Khoo, Yu-Hsi Huang and Wen Tong Chong, “Enhancement of Energy Harvesting Performance by a Coupled Bluff Splitter Body and PVEH Plate through Vortex Induced Vibration near Resonance,” applied sciences, MDPI, September 2017.

    [34] J.D. Anderson, Jr., “Governing Equations of Fluid Dynamics,” 1992.

    [35] https://www.youtube.com/watch?v=Z47vKcfhVKc

    [36] https://en.wikipedia.org/wiki/Finite_volume_method_for_three-dimensional_diffusion_problem#/media/File:3D_Discretization.JPG

    [37] https://en.wikipedia.org/wiki/Finite_volume_method_for_one-dimensional_steady_state_diffusion#/media/File:Control_volume_width.jpg

    [38] https://www.nuclear-power.net/wp-content/uploads/2016/05/Reynolds-number.png

    [39] https://en.wikipedia.org/wiki/Karman_vortex_street

    [40] cse.math.fcu.edu.tw/course/1/html/Chapter2_1.htm

    [41] typhoon.ws/learn/reference/beaufort_scale

    QR CODE