簡易檢索 / 詳目顯示

研究生: 陳彥喬
YAN-CHIAU CHEN
論文名稱: 以五軸加工技術製作生物可降解支架
Utilizing Five-axis Machining Technology to Fabricate Biodegradable Stents
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 郭進星
Chin-Hsing Kuo
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 五軸加工可降解支架
外文關鍵詞: Five-axis Machining, Biodegradable Stents
相關次數: 點閱:325下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生醫支架(Biomedical Stent)為一種中空管狀結構的醫療器材,主要目的為支撐血管壁,使阻塞的血管保持暢通,可降解支架使用的材料為PLA(Po -lylactic Acid),PLA支架在人體中會自行溶化吸收,故不須再進行二次手術將支架取出,並具有足夠的機械強度及生物相容性。
    現今的心血管支架,大多是以雷射加工製造而成,使得支架側壁呈現垂直的銳角結構,在醫療上需避免因支架直角而造成血管非預期性的損傷,因此,本研究以微銑削的方式進行可降解支架的製程,利用微小徑球刀將支架結構圓角化,改善支架壁邊銳利的問題。
    本研究以五軸加工機銑削生物可降解支架,過程中以主軸固定法將PLA圓管固定在治具上,確保圓管的垂直度與工作座標的對位,並量測不同刀軸下的切深差取得旋轉中心誤差值,配合齊次座標轉換對NC程式進行補償,降低刀具軌跡誤差。加工方面,利用交錯式切削法與水解膠,可增加管壁附著力,預防支架斷裂,使支架線寬從0.6mm降低至0.3mm,經實驗證實以銑削方式確實能將支架銳角去除,成功製作出直徑6mm、厚度0.3 mm、圓角0.1R之生物可降解支架。


    Biomedical stent is a medical device which is a tube type and can be inserted into a vascular to relieve the narrowing problem. Biodegradable stents have attracted much attention recently because they can be dissolved in human body and therefore a second operation to remove it is not required. The most widely used material for biodegradable stents is PLA (Polylactic Acid) due to its sufficient mechanical strength and biocompatibility.
    Nowadays, mostly biomedical stents are made by laser cutting process. The sidewalls of stent struts made by laser cutting are vertical and sharp. For medical implanted usage, the stent sharp corners are not preferred since they may cause unexpected damages to human vascular. According to this reason, a five-axis machining method with ball nose cutters was tried to fabricate biodegradable stents for improving the stent strut dimension accuracy and creating round corners on the sidewalls.
    In this research, an innovative setting method by utilizing the five-axis machine spindle fixture and a UV curable gel was applied to ensure the workpiece, a PLA tube, to be vertical, coaxial and concentric to the milling cutter and the C-axis of five-axis machine. In addition, a meansuring method was performed to investigate the center position errors of A-axis and C-axis, and the measured resullts were used to increase the machining accuracy by adding compensation in our NC program. For preventing broken stent struts when the strut width under 300 micrometers, a staggered cutting procedure and a gel-assisted method were applied to increase the stent strut strength and tube wall adhesion. The experiment confirmed that the proposed milling method can remove acute stent wall corners successfully. The five-axis machining technology for biodegrdable stents has completely been developed, with dimensions of stent diameter 6 mm, thickness 0.3 mm, strut width from 0.6 mm to 0.3 mm, and round corner radius 0.1 m.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 符號索引 第一章、緒論 1-1研究背景 1-2研究動機與目的 第二章、文獻回顧 2-1五軸加工文獻 2-2微細切削文獻 2-3工具機誤差補償文獻 2-4血管支架文獻 第三章、研究方法 3-1五軸程式製作 3-1-1 支架本體CAM 3-1-2 支架圓角CAM 3-2實驗設備 3-2-1 五軸加工機 3-2-2 光學顯微鏡 (Optical Microscope,OM) 3-2-3 三次元量表 第四章、實驗規劃 4-1 工件與治具備製 4-1-1 PLA圓管 4-1-2 支架治具 4-1-3 微銑刀具 4-2 PLA圓管固定 4-3 旋轉中心誤差補償 4-4-1 齊次座標轉換矩陣建置 4-4-2 計算A軸旋轉中心誤差值 4-2-3 計算C軸旋轉中心誤差值 4-4-4 A、C軸旋轉中心誤差補償 4-4支架切削方式(交錯式切削法) 第五章、實驗結果 5-1 A軸旋轉中心誤差 5-2 C軸旋轉中心誤差 5-3 A、C軸旋轉中心誤差補償 5-4 交錯式切削結果 5-5 支架路徑補償結果分析 5-5-1 圓弧均勻度分析 5-5-2 支架剖面高度分析 5-5-3 支架剖面寬度分析 5-6 圓弧尺寸誤差分析 5-6-1 圓弧回彈輪廓計算 5-6-2 圓弧輪廓誤差分析 第六章、結論與未來展望 6-1 結論 6-2 未來展望 參考文獻

    [1]林孟頡“以環形熱壓轉印技術開發生物可降解支架”,國立台灣科技大學碩士論文,2013。
    [2]劉紫煒“生醫鎳鈦支架後處理方法之研究”,國立台灣科技大學碩士論文,2015。
    [3]王建翔“以幾何驅動法則改善五軸加工路徑之切削效能”,國立台灣科技大學碩士論文,2013。
    [4]Y. H. Jung, D. W. Lee, J. S. Kim, H. S. Mok “NC post-processor for 5-axis milling machine of table-rotating/tilting type”, Materials Process -ing Technology, Vol. 130–131, pp. 641–646, 2002.
    [5]C. H. She, Z. T. Huang “Postprocessor development of a five-axis mac -hine tool with nutating head and table con -figuration”, Advanced Ma -nufacturing Technology, Vol. 38, pp. 728-740, 2007.
    [6]C. H. She, C. C. Chang “Development of a five-axis postprocessor sys -tem with a nutating head”, Materials Processing Technology, Vol. 187–188, pp. 60–64, 2007.
    [7]吳俊毅“細微切削之切削平台設計與加工分析”,國立清華大學碩士論文,2005。
    [8]Z. J. Yuan, M. Zhou, S. Dong “Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultrapreci -sion machining”, Materials Processing Technology, Vol. 62, pp. 327-330, 1996.
    [9]J. Chae, S. S. Park, T. Freiheit “Investigation of micro-cutting operatio -ns”, Machine Tools Manufacture, Vol. 46, pp. 313–33, 2006.
    [10]X. Zhang, H. Fu, Z. Han, Y. Sun “5-Axis Micro -Milling Machine Too -l for Machining Complex 3D Meso-Scale Parts”, Mechatronics and Automation, pp. 9–12, 2009.
    [11]Y. B. Bang, K. M. Lee, S. Oh “5-axis micro milling machine for mach -ining micro parts”, Advanced Manufacturing Technology, Vol. 25, pp. 888-894, 2005.
    [12]V. Jardret, H. Zahouani, J. L. Loubeta, T. G. Mathia“Understanding and quantification of elastic and plastic deformation during a scratch test”,Vol. 218, pp. 8-14, 1998.
    [13]S. Islam, R. Ibrahim, N. Khondoker“Effect of Machining Velocity in Nanoscale Machining Operations” , Materials Science and Engineer -ing, Vol. 78, 2015.
    [14]N. Eckman, A. Saigal, T. P. James“ Determination of cutting edge sep -aration point during micromachining of highly elastic materials” ,15th International Conference on Experimental Mechanics.
    [15]S. Islam, R. N. Ibrahim “Investigation of the elastic plastic deformation behaviour by nano scratching method”, International Conference on Co -mposties/nano engineering, Vol. 6, pp. 115-116, 2009.
    [16]廖明毅“以DBB量測及校正五軸工具機之幾何誤差”,國立清華大學碩士論文,2005。
    [17]J. B. Bryan “A simple method for testing measuring machines and mac -hine tools” , Precision Engineering, Vol. 4, pp. 61-69, 1982.
    [18]P. S. Huang, J. Ni “On-Line Error Compensation of Coordinate Measu -ring Machines”, Machine Tools Manufacture, Vol. 35, pp 725-738, 19 -94.
    [19]M. Sono, Y. Sakaida, T. Kawai, Y. Takeuchi “Development of Tool Setting Error Compensation Method for 5-axis Control Ultraprecision Machining”, Proceedings of ASPE Meeting, Vol. 435, 2005.
    [20]S. Baba, K. Nakamoto, Y. Takeuchi “ Multi -axis Control Ultraprecis -ion Machining Based on Tool Setting Errors Compensation”, Autom -ation Technology, 2015.
    [21]J. S. Chen, J. X. Yuan, J. Ni, S. M. Wu “Real-time Compensation for Time variant Volumetric Errors on a Machine Center”, Transaction of the ASME, Vol. 115, pp. 472-479, 1993.
    [22]B. Stepak, A. J. Antonczak, M. B. Jowsa, J. Filipiak, C. Pezowicz, K. M. Abramski “Fabrication of a polymer based biodeg radable stent using a CO 2 laser”, Archives of Civil and Mechanical Engineering, Vol. 14, pp. 317-326, 2014.
    [23]王基信“以電氣紡絲法製備 PLA/PCL 小管徑人工血管支架之性質及其細胞生長研究”國立交通大學碩士論文,2002.
    [24]S. A. Park, S. J. Lee, K. S. Lim, I. H. Bae,J. H. Lee, W. D. Kim,M. H. Jeong, J. K. Park “In vivo evaluation and characterization of a bioabsor -bable drug coated stent fabricated using a 3D-printing system”, Materi -als Letters, Vol. 141, pp. 355-358, 2015.
    [25]姜富均“生物可降解式心血管支架支研究與開發 ”長庚大學碩士論文,2009。
    [26]鄧秉敦“以環形熱轉印技術開發可降解聚乳酸薄膜支架”國立臺灣科技大學博士論文,2014.
    [27]F. L. Litvin, A. Fuentes “Gear Geometry and Applied Theory”, Cambri -dge University Press, pp. 1-32, 2004.

    無法下載圖示 全文公開日期 2021/01/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE