簡易檢索 / 詳目顯示

研究生: 陳芃喧
Peng-Hsuan Chen
論文名稱: 以3D列印及薄膜型模具開發新型可降解腸道支架
Using 3D Printing and Flexible Thin Film Mold to Develop New Type Biodegradable Colonic Stents
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 楊申語
Sen-Yeu Yang
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 105
中文關鍵詞: 腸道支架可降解支架薄膜型支架模具
外文關鍵詞: colonic stent, biodegradable stent, thin film-type stent mold
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前在治療結腸阻塞(colonic obstruction)及腸道手術後吻合口之滲漏問題,常會植入自擴式金屬支架(self-expandable stents, SEMS)。但腸道支架置入後,可能產生支架移位(migration)、穿孔(perforation)等併發症,且目前尚無適用於腸道之可降解之支架。
    有鑑於此,本論文提出結合3D列印技術,以薄膜型支架模具及光固化充填式技術開發可降解腸道支架。利用可降解高分子材料能完全被人體吸收之特性,藉此降低併發症的發生率,並提供足夠的徑強度以維持腸道的擴張。
    本論文使用ANSYS模擬軟體分析腸道支架之徑向力,設計符合腸道規格之支架,並透過3D列印技術以PVA(polyvinyl alcohol, PVA)可快速降解材料製作。利用PCL(polycaprolactone, PCL)覆膜方式製作出薄膜型支架模具,經由收縮測試確認其適用於直徑9F(3mm)的置入系統,接著分別充填三種材料─光固化樹脂、光固化可降解材料PCL-DA(PCL-diacrylate, PCL-DA),以及添加不同比例碳黑(0.5%以及1%)的PCL-DA等增加PCL-DA之機械強度,藉此探討充填三種材料之支架的徑向力差異。
    實驗結果顯示,結合3D列印製作出來的薄膜型支架模具,可成功充填光固化可降解材料,並完成充填式可降解腸道支架。在充填光固化可降解材料方面,PCL-DA添加0.5%碳黑之支架徑向強度明顯比未添加碳黑高出32%,添加1%碳黑強度則可增加89%。與市售之金屬大腸支架相比,本論文所製作的充填式可降解腸道支架,能提供足夠的徑向強度,克服植入式金屬支架的瓶頸,對於腸道支架應用具有一定的貢獻。


    At present, self-expandable metal stent (SEMS) is an alternative to emergency surgery in the management of colonic obstruction, but there are still several significant complications after colorectal stent placement.
    To solve this problem, this research is trying to integrate 3D printing, the filling mold design and UV curing method for developing biodegradable colonic stents.
    Firstly, 3D Printing was used to print a PVA (polyvinyl alcohol, PVA), rapidly degradable stent, and a thin film-type stent mold was made from the rapidly degradation stent. The thin film stent mold was made of flexible and soft biodegradable material, namely PCL (polycaprolactone, PCL), and crimped with a balloon in a delivery system. After the flexible thin film stent mold was deployed and expanded by the balloon, a special UV curable biodegradable gel, made by PCL-DA (PCL-diacrylate, PCL-DA) and photoinitiator, was injected into the mold. After that, the gel in the mold was cured by UV light and formed a biodegradable stent.
    To confirm whether the method is feasible, crimping tests and filling tests were performed. It has been proved that the flexible thin film stent mold can be crimped into a 9F (3 mm) diameter stent delivery system. Three kinds of filling materials, a UV curing resin with similar elastic modulus to PLA (polylactic acid, PLA), PCL-DA, and PCL-DA + carbon black were tested in the filling tests. The results has shown that the adding carbon PCL-DA can effectively increase the radial force of stent. It is found that the adding 1% carbon PCL-DA with the increase of radial force, namely 89%. In addition, in this study ANSYS software was used to simulate the radial force of stents. Comparing to current metallic colonic stents, the fabricated biodegradable stents in this study can achieve the same level of radial force, overcoming the shortage of conventional biodegradable stents. This study provides a possible way to develop biodegradable colonic stents in the future.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究背景 1.2.1 生物可降解支架(Biodegradable stent, BDS) 1.2.2 腸道支架及腸道內視鏡規格 1.2.3 腸道支架及相關臨床實驗 1.3 研究動機與目的 1.4 論文架構 第二章 文獻回顧 2.1 聚合物特性 2.1.1 分子量 2.1.2 結晶度 2.1.3 生物可降解性質 2.2 生物可降解材料 2.2.1 聚己內酯(Polycaprolactone, PCL) 2.2.2 聚乙烯醇(Polyvinyl Alcohol, PVA) 2.3 生物相容性(Biocompatibility) 2.3.1 聚己內酯(Polycaprolactone, PCL) 2.3.2 PCL-DA 2.4 支架覆膜製作 2.5 生物可降解支架 2.5.1. 聚己內酯(PCL)降解 2.5.2. PCL-DA降解 2.6 應用積層製造(Additive Manufacturing, AM) 2.6.1 熔融擠製技術(Fused Deposition Modeling, FDM) 2.6.2 3D列印製作支架 2.7 光固化原理 2.7.1. 光起始劑 2.7.2. 光固化技術於生醫之應用 2.7.3. 碳黑(Carbon Black, CB) 2.8 可降解支架製備方法 第三章 實驗方法與規劃 3.1 原料與藥品 3.2 儀器設備 3.2.1 3D列印機 3.2.2 熱風循環烘箱(Cyclic Oven) 3.2.2 電磁加熱攪拌器(Hot Plate and Magnetic Stirrer) 3.2.3 掃描式電子顯微鏡(Scanning Electron Microscopes) 3.2.4 Z軸量測平台 3.3 研究方法 3.3.1. 充填式支架概念 3.3.2. 充填式支架製作程序 3.4 實驗規劃 3.5 薄膜型支架模具實驗規劃 3.5.1 利用3D列印製作 PVA快速降解支架 3.5.2 PCL溶液調配 3.5.3 PCL薄膜徑向力測量 3.5.3 薄膜型支架模具 3.6 薄膜型支架模具實驗規劃 3.6.1 壓縮測試 3.7 材料合成介紹 3.7.1 PCL-DA 合成 3.7.2 光起始劑 3.7.3 光固化樹脂 3.8 充填材料之機械性質測試 3.8.1 添加不同比例之光起始劑硬度及收縮率 3.8.2 PLA、光固化樹脂、PCL、PCL+CB之機械性質 3.9 充填式光固化支架模具實驗規劃 3.9.1 充填光固化測試 3.9.2 支架徑向力模擬 第四章 結果與討論 4.1 薄膜型支架模具 4.1.1 PCL薄膜徑向力測量結果 4.1.2 PVA快速降解支架後處理 4.1.3 薄膜型支架模具 4.1.4 薄膜型支架模具收縮測試結果 4.1.5 薄膜型支架注水測試結果 4.2 充填材料之機械性質檢測結果 4.2.1 添加不同比例之光起始劑之硬度及收縮率 4.2.2 PLA、光固化樹脂、PCL、PCL+CB機械性質比較 4.3 薄膜型支架充填光固化材料 4.4 支架徑向力模擬分析結果 4.5 支架徑向力性能模擬分析和實驗結果之比較 第五章 結論 第六章 未來展望 參考文獻

    [1] V. Mahadevan, "Anatomy of the caecum, appendix and colon", Surgery (Oxford), vol. 35, no. 3, pp. 115-120, 2017.
    [2] J. Ferlay, I. Ferlay Soerjomataram, R. Dikshit, and S. Eser, Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. pp. E359-E386, 2015.
    [3] 衛生福利部國民健康署,「癌症登記報告」,2017
    [4] M. M. El-Omar, G. Dangas, I. Iakovou, and R. Mehran, "Update on in-stent restenosis", Current interventional cardiology reports, vol. 3, no. 4, pp. 296-305, 2001.
    [5] A. Schomig, A. Kastrati, H. Mudra, R. Blasini, H. Schuhlen, V. Klauss, G. Richardt, and F. J. Neumann , "4-year experience with palmaz-schatz stenting in coronary angioplasty complicated by dissection with threatened or present vessel closure", Circulation, Article vol. 90, no. 6, pp. 2716-2724, 1994.
    [6] P. W. Serruys, M. J. B. Kutryk, and A. T. L. Ong, "Coronary-artery stents", New England Journal of Medicine, vol. 354, no. 5, pp. 483-495, 2006.
    [7] A. Repici and D. de Paula Pessoa Ferreira, Expandable metal stents for malignant colorectal strictures. pp. 103-107, 2011.
    [8] 楊濱輔,「淺談大腸直腸癌手術治療」,2015,取自:http://www.kmuh.org.tw/www/kmcj/data/10405/9.htm
    [9] C. Placer, J. M. Enriquez-Navascues, G. Elorza, A. Timoteo, J. A. Mugica, N. Borda, Y. Saralegui, and J. L. Elosegui, "Preventing complications in colorectal anastomosis: results of a randomized controlled trial using bioabsorbable staple line reinforcement for circular stapler", Diseases of the Colon & Rectum, Article vol. 57, no. 10, pp. 1195-1201, 2014.
    [10] R. Frago, E. Kreisler, S. Biondo, E. Alba, J. Dominguez, T. Golda, D. Fraccalvieri, M. Milian, and L. Trenti, "Complications of distal intestinal occlusion treatment with endoluminal implants", Cirugia Espanola, Article vol. 89, no. 7, pp. 448-455, 2011.
    [11] C. S. McArdle and D. J. Hole, "Emergency presentation of colorectal cancer is associated with poor 5-year survival", British Journal of Surgery, Article vol. 91, no. 5, pp. 605-609, 2004.
    [12] S. Biondo, J. Marti-Rague, E. Kreisler, D. Pares, A. Martin, M. Navarro, L. Pareja, and E. Jaurrieta, "A prospective study of outcomes of emergency and elective surgeries for Complicated colonic cancer", American Journal of Surgery, Article; Proceedings Paper vol. 189, no. 4, pp. 377-383, 2005.
    [13] S. Puertolas, D. Navallas, A. Herrera, E. Lopez, J. Millastre, E. Ibarz, S. Gabarre, J. A. Puertolas, and L. Gracia, "A methodology for the customized design of colonic stents based on a parametric model", Journal of the Mechanical Behavior of Biomedical Materials, Article vol. 71, pp. 250-261, 2017.
    [14] G. Li, Y. Li, P. Lan, J. S. Li, Z. Zhao, X. W. He, J. Zhang, and H. Hu, "Biodegradable weft- knitted intestinal stents: Fabrication and physical changes investigation in vitro degradation", Journal of Biomedical Materials Research Part A, Article vol. 102, no. 4, pp. 982-990, 2014.

    [15] R. CastañO, J. D. Puerta, J. Lopera, E. Sanin, F. Erebrie, E. NuñEz, and L. E. GarcíA, "Self-expanding metal stents in malignant and benign colonic obstructions", Gastrointestinal Endoscopy, vol. 67, no. 5, p. 151, 2008.
    [16] 張復瑜,「以薄膜型支架模具及腸道內充填方法開發新型可降解腸道支架」,科技部專題研究計畫書,2017。
    [17] E. J. Kim and Y. J. Kim, "Stents for colorectal obstruction: Past, present, and future", World Journal of Gastroenterology, Review vol. 22, no. 2, pp. 842-852, 2016.
    [18] Fujinon. "Video flexible colonoscope:Digital endoscope EC-L590ZW", 2016,from:http://fujihunt.com.sg/en/products/business_products/medical/endoscopy/technology/bluelaser_Imaging/colonoscopy/
    [19] Olympus America Inc., Colonoscopes PCF-PH190L/I, 2014, from:https://medical.olympusamerica.com/sites/us/files/pdf/190_Series_Colonoscopes_interactive.pdf
    [20] U. P. Khot, A. W. Lang, K. Murali, and M. C. Parker, "Systematic review of the efficacy and safety of colorectal stents", British Journal of Surgery, Review vol. 89, no. 9, pp. 1096-1102, 2002.
    [21] S. Sebastian, S. Johnston, T. Geoghegan, W. Torreggiani, and M. Buckley, "Pooled analysis of the efficacy and safety of self-expanding metal stenting in malignant colorectal obstruction", American Journal of Gastroenterology, Review vol. 99, no. 10, pp. 2051-2057, 2004.
    [22] J. T. Seitz, "The estimation of mechanical-properties of polymers from molecular-structure", Journal of Applied Polymer Science, Article vol. 49, no. 8, pp. 1331-1351, 1993.
    [23] W.-F. Su, Polymer size and polymer solutions. Principles of Polymer Design and Synthesis, pp. 9-26, 2013.
    [24] M. J. Jenkins and K. L. Harrison, "The effect of molecular weight on the crystallization kinetics of polycaprolactone", Polymers for Advanced Technologies, Article vol. 17, no. 6, pp. 474-478, 2006.
    [25] T. J. Corden, I. A. Jones, C. D. Rudd, P. Christian, and S. Downes, "Initial development into a novel technique for manufacturing a long fibre thermoplastic bioabsorbable composite: in-situ polymerisation of poly-epsilon-caprolactone", Composites Part a-Applied Science and Manufacturing, Article vol. 30, no. 6, pp. 737-746, 1999.
    [26] D. W. Hutmacher, "Scaffolds in tissue engineering bone and cartilage", Biomaterials, Article vol. 21, no. 24, pp. 2529-2543, 2000.
    [27] A. Heimowska, M. Morawska, and A. Bocho-Janiszewska, Biodegradation of poly(ε-caprolactone) in natural water environments, 2017.
    [28] K. T., H.-V. M., M. M., and S. J., "Biodegradable lactone copolymers. III. Mechanical properties of ε-caprolactone and lactide copolymers after hydrolysis in vitro", Journal of Applied Polymer Science, vol. 59, no. 8, pp. 1299-1304, 1996.
    [29] D. W. Hutmacher, "Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives", Journal of Biomaterials Science-Polymer Edition, Article vol. 12, no. 1, pp. 107-124, 2001.
    [30] M. A. Woodruff and D. W. Hutmacher, "The return of a forgotten polymer-Polycaprolactone in the 21st century", Progress in Polymer Science, Review vol. 35, no. 10, pp. 1217-1256, 2010.
    [31] O. Coulembier, P. Degée, J. L. Hedrick, and P. Dubois, "From controlled ring-opening polymerization to biodegradable aliphatic polyester: especially poly(β-malic acid) derivatives", Progress in Polymer Science, vol. 31, no. 8, pp. 723-747, 2006.
    [32] A. Calmon, V. bellon maurel, and F. Silvestre, Standard methods for testing the aerobic biodegradation of polymeric materials. Review and perspectives. pp. 207-226, 1998.
    [33] C. C. DeMerlis and D. R. Schoneker, "Review of the oral toxicity of polyvinyl alcohol (PVA)", Food and Chemical Toxicology, vol. 41, no. 3, pp. 319-326, 2003.
    [34] E. Chiellini, A. Corti, S. D'Antone, and R. Solaro, "Biodegradation of poly (vinyl alcohol) based materials", Progress in Polymer Science, vol. 28, no. 6, pp. 963-1014, 2003.
    [35] Y. Ramot, M. Haim-Zada, A. J. Domb, and A. Nyska, "Biocompatibility and safety of PLA and its copolymers", Advanced Drug Delivery Reviews, vol. 107, pp. 153-162, 2016.
    [36] D. da Silva, M. Kaduri, M. Poley, O. Adir, N. Krinsky, J. Shainsky-Roitman, and A. Schroeder, "Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems", Chemical Engineering Journal, vol. 340, pp. 9-14, 2018.
    [37] J. BLACK, "Biological performance of materials: fundamentals of biocompatibility", 2005.
    [38] M. C. Serrano, R. Pagani, M. Vallet-Regı́, J. Peña, A. Rámila, I. Izquierdo, and M. T. Portolés, "In vitro biocompatibility assessment of poly(ε-caprolactone) films using L929 mouse fibroblasts", Biomaterials, vol. 25, no. 25, pp. 5603-5611, 2004.
    [39] 陳定閒,「可光固化PCL結合PEG-diacrylate 添加幾丁聚醣(Chitosan)應用於製作組織工程支架之研究」,國立臺灣科技大學機械工程系碩士論文,2014。
    [40] H. W. Fang, K. Y. Li, T. L. Su, T. C. K. Yang, J. S. Chang, P. L. Lin, and W. C. Chang, "Dip coating assisted polylactic acid deposition on steel surface: film thickness affected by drag Force and gravity", Materials Letters, vol. 62, no. 21, pp. 3739-3741, 2008.
    [41] A. J. Guerra, J. San, and J. Ciurana, "Fabrication of PCL/PLA composite tube for stent manufacturing", Procedia CIRP, vol. 65, pp. 231-235, 2017.
    [42] S. Amidon, J. E. Brown, and V. S. Dave, "Colon-targeted oral drug delivery systems: Design trends and approaches", Aaps Pharmscitech, Review vol. 16, no. 4, pp. 731-741, 2015.
    [43] V. K. Khatiwala, N. Shekhar, S. Aggarwal, and U. K. Mandal, "Biodegradation of poly(ε-caprolactone) (PCL) film by alcaligenes faecalis", Journal of Polymers and the Environment, vol. 16, no. 1, pp. 61-67, 2008.
    [44] X. F. Lam Christopher, W. Hutmacher Dietmar, J.-T. Schantz, A. Woodruff Maria, and H. Teoh Swee, "Evaluation of Polycaprolactone Scaffold Degradation for 6 Months in Vitro and in vivo", Journal of Biomedical Materials Research Part A, vol. 90A, no. 3, pp. 906-919, 2008.
    [45] X. F. Lam Christopher, H. Teoh Swee, and W. Hutmacher Dietmar, "Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium", Polymer International, vol. 56, no. 6, pp. 718-728, 2007.
    [46] D. Singh, R. Singh, and K. Singh Boparai, Development and surface improvement of FDM pattern based investment casting of biomedical implants: A state of art review. pp. 80-95, 2018.
    [47] A. Guerra, A. Roca, and J. de Ciurana, "A novel 3D additive manufacturing machine to biodegradable stents", Procedia Manufacturing, vol. 13, pp. 718-723, 2017.
    [48] S. A. Park, S. J. Lee, K. S. Lim, I. H. Bae, J. H. Lee, W. D. Kim, and J. K. Park, "In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system", Materials Letters, vol. 141, pp. 355-358, 2015.
    [49] 張弘銘,「甲基丙酸羥乙酯含量對紫外光固化聚氨基甲酸酯之性質研究」,國立臺北科技大學有機高分子研究所碩士論文,2016。
    [50] P. Coimbra, D. Fernandes, P. Ferreira, M. H. Gil, and H. C. de Sousa, "Solubility of Irgacure® 2959 photoinitiator in supercritical carbon dioxide: experimental determination and correlation", The Journal of Supercritical Fluids, vol. 45, no. 3, pp. 272-281, 2008.
    [51] S. Bryant, C. R. Nuttelman, and K. Anseth, Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts. pp. 439-457, 2000.
    [52] C. G. Williams, A. N. Malik, T. K. Kim, P. N. Manson, and J. H. Elisseeff, "Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation", Biomaterials, vol. 26, no. 11, pp. 1211-1218, 2005.
    [53] Y. L. Cheng, C. J. Hsueh, and S. H. Hsiang, "Fabrication of photo-polymerized PCL tissue engineering scaffolds by dynamic masking rapid prototyping system", Materials Science Forum, vol. 750, pp. 125-129, 2013.
    [54] L. Ma-Hock, V. Strauss, S. Treumann, K. Kuttler, W. Wohlleben, T. Hofmann, S. Groters, K. Wiench, B. van Ravenzwaay, and R. Landsiedel, "Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black", Particle and Fibre Toxicology, Article vol. 10, p. 19, 2013.
    [55] S.-H. Pong, S.-H. Chiu, C.-Y. Chen, K.-T. Chen, and S. T. Wicaksono, "Mechanical and thermal properties of photopolymer/CB (carbon black) nanocomposite for rapid prototyping", Rapid Prototyping Journal, vol. 21, no. 3, pp. 262-269, 2015.
    [56] A. M. Schrand, L. Dai, J. J. Schlager, S. M. Hussain, and E. Osawa, "Differential biocompatibility of carbon nanotubes and nanodiamonds", Diamond and Related Materials, vol. 16, no. 12, pp. 2118-2123, 2007.
    [57] 葉柔吟,「以環形熱壓轉印技術開發生物可降解支架」,國立台灣科技大學機械工程系碩士論文,2017。
    [58] 林孟頡,「以環形熱壓轉印技術開發生物可降解支架」,國立台灣科技大學機械工程系碩士論文,2013。
    [59] Y.-L. Cheng and F. Chen, "Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application", Materials Science and Engineering: C, vol. 81, pp. 66-73, 2017.

    [60] J.-W. Park, G.-S. Shim, J.-H. Back, H.-J. Kim, S. Shin, and T.-S. Hwang, "Characteristic shrinkage evaluation of photocurable materials", Polymer Testing, vol. 56, pp. 344-353, 2016.
    [61] C. S. CHEMICALS, Ciba® Irgacure® 2959, 2011, from: http://www.xtgchem.cn/upload/20110629045632.PDF
    [62] 謝浚雄,「光聚合PCL材料系統成分探討及其應用於快速成型組織工程支架」,國立臺灣科技大學機械工程系碩士論文,2011。
    [63] S. Eshraghi and S. Das, Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. pp. 2467-76, 2010.
    [64] 蔡璨鴻,「應用熱壓轉印技術於聚乳酸高分子微奈米結構製作之製程研究」,國立台灣科技大學機械工程系碩士論文,2012。
    [65] J. H. Kim, T. J. Kang, and W.-R. Yu, "Mechanical Modeling of Self-expandable Stent Fabricated Using Braiding Technology", Journal of Biomechanics, vol. 41, no. 15, pp. 3202-3212, 2008.
    [66] T. Tokuda, Y. Shomura, N. Tanigawa, S. Kariya, A. Komemushi, H. Kojima, and S. Sawada, "Mechanical characteristics of composite knitted stents", CardioVascular and Interventional Radiology, vol. 32, no. 5, pp. 1028-1032, 2009.
    [67] C. Singh and X. Wang, "A biomechanically optimized knitted stent using a bio-inspired design approach", Textile Research Journal, vol. 86, no. 4, pp. 380-392, 2015.

    [68] D. Y. Cheung, J. Y. Kim, S. P. Hong, M. K. Jung, B. D. Ye, S. G. Kim, and H. G. Kim, Outcome and safety of self-expandable metallic stents for malignant colon obstruction: A Korean multicenter randomized prospective study. pp. 3106-13, 2012.

    無法下載圖示 全文公開日期 2023/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE