簡易檢索 / 詳目顯示

研究生: 潘信宏
Xin-Hong Pan
論文名稱: 工業機器人之運動干涉判斷及障礙物迴避之研究
COLLISION DETECTION AND OBSTACLE AVOIDANCE OF INDUSTRIAL MANIPULATORS
指導教授: 蔡高岳
Kao-Yueh Tsai
口試委員: 王勵群
Li-Chun Wang
石伊蓓
Yi-Pei Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 83
中文關鍵詞: 避障礙物工業機器人干涉判斷
外文關鍵詞: avoid obstacle, industrial manipulators, collisions
相關次數: 點閱:171下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一機器人在工作空間中之路徑必需要避開奇異點及障礙物,其中與奇異點接近之程度可利用賈氏矩陣行列式值之大小評估,但在避開障礙物方面則非常不易處理。目前避開障礙物之方法大多以構造較為簡單之幾何元件(例如圓球或橢球)代表機器人連桿及障礙物,當兩元件有交集時代表發生干涉現象。為了安全起見,這些幾何元件均大於實際連桿及障礙物之尺寸。因此方法無法精確判斷是否真正發生干涉現象。
      此論文研究工業機器人避開障礙物之方法。一般方法必須判斷機器人之每一連桿是否與障礙物發生干涉現象,本文利用工業機器人外型之特徵提出可迅速判斷哪些連桿不可能發生干涉現象而提高運算效率,並利用可能發生干涉現象之連桿及障礙物兩中心線之距離判斷是否真正發生干涉現象。所提出之方法不需使用到代表連桿及障礙物之幾何方程式且不需判斷每一連桿與障礙物是否發生干涉現象,因此具有較高之運算效率,本文亦研究當機器人可能碰撞到障礙物時,如何以有效率之方法使機器人避開障礙物。


    A trajectory needs to stay away from singularity and obstacles. The closeness to singularity can be easily detected using the determinant of the Jacobian matrix, but obstacle avoidance is much more difficult to deal with. Existing methods use simple geometric models (such as spheres or ellipsoids) to represent the links and the obstacles. Interferences occur if any two models intersect. For safety considerations, the sizes of geometric models are relatively larger than the sizes of links and obstacles, so the methods can only roughly evaluate possible collisions.
      This thesis studies obstacle avoidance for industrial manipulators. In theory, it needs to check if each link interferes with a foreign object. Some simple rules based on the special structure of the manipulators are proposed in this work that can directly determine which link might interfere with the object. Next, the distance between the centerlines of the link and the object is used to check if link interactions occur. The proposed methods are efficient because no complicated geometric equations are involved, and there is no need to check if the foreign object interferes with each link. How to quickly move the manipulator away from an obstacle to avoid collisions is also investigated.

    目錄 中文摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 本文架構 5 第二章 理論基礎 6 2.1 連桿參數定義 6 2.2 六軸串聯式機器人反位移分析 9 2.3 機器人之賈氏矩陣 14 第三章 干涉判斷 18 3.1 連桿間之干涉判斷 18 3.2 連桿與障礙物之干涉判斷 29 3.2.1 第一種判斷方法 30 3.2.2 第二種判斷方法 30 3.3 數值範例 41 3.3.1 第一種判斷方法 43 3.3.2 第二種判斷方法 45 3.4 小結 47 第四章 障礙物之迴避 49 4.1 干涉位置 50 4.2 障礙物之迴避 52 4.3 數值範例 59 4.4 小結 66 第五章 結論與未來方向 68 參考文獻 70

    [1]X. Zhu, H. Qiao, “Obstacle avoidance for kinematically redundant manipulators using polyhedral approximations”, J. of Mech. Eng. Sci., Vol. 217 no. 5 533–542, 2003.

    [2]Ashwini Shukla, Ekta Singla, Pankaj Wahi, Bhaskar Dasgupta, “A direct variational method for planning monotonically optimal paths for redundant manipulators in constrained workspaces”, Robotics and Autonomous Systems, Vol. 61, Issue 2, pp. 209–220, 2013.

    [3]Ekta Singla, Bhaskar Dasgupta, “Maneuvering redundant manipulators in cluttered environments”, Robotics and Mechatronics Conf. (RobMech), pp. 20–25, 2013.

    [4]林俊呈,「具最大無奇異點軸位移空間或工作空間的六自由度並聯式機器人設計方法之研究」,國立台灣科技大學機械工程研究所,2013年7月博士論文。

    [5]賈慶軒,張倩茹,高欣,陳鋼,宋荊洲,「預選擇最小距離指標的冗餘機器人動態避障算法」,機器人ROBOT,第35卷第1期,pp. 17–22, 2013。

    [6]V. Perdereau, C. Passi, M. Drouin, “Real-time control of redundant robotic manipulators for mobile obstacle avoidance”, Robotics and Autonomous Systems, Vol. 41, Issue 1, pp. 41–59, 2002.

    [7]H. Tanaka, M. Minami, Y. Mae, “Evaluation of obstacle avoidance ability for redundant mobile manipulators”, Industrial Electronics Society, 2005. IECON 2005. 32nd Annual Conf. of IEEE 6-10., pp. 1768-1773, 1st Aug. 2005.

    [8]Dongsheng Guo, Yunong Zhang, “A New Inequality-Based Obstacle-Avoidance MVN Scheme and Its Application to Redundant Robot Manipulators”, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 42, Issue 6, pp. 1326–1340, 2012.

    [9]Dongsheng Guo, Yunong Zhang, “Acceleration-Level Inequality-Based MAN Scheme for Obstacle Avoidance of Redundant Robot Manipulators”, IEEE Transactions on Industrial Electronics, Vol. 61, Issue 12, pp. 6903–6914, 2014.

    [10]O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots”, IEEE Proc. Int. Conf. on Robotics and Automation, Vol. 2, pp. 500–505, 1985.

    [11]林俊明,「七自由度多餘軸機器人之位移分析及路徑規劃」,國立台灣科技大學機械工程研究所,2013年6月碩士論文。

    [12]K. Kondo, “Motion planning with six degrees of freedom by multistrategic bidirectional heuristic free-space enumeration”, IEEE Transactions on Robotics and Automation, Vol. 7, Issue 3, pp. 267–277, 1991.

    [13]B.D. Seitz, Cipra, J. Raymond, “Real time collision avoidance of a planar manipulator with an interfering single-link arm”, IEEE Transactions on Robotics and Automation, Vol. 2, pp. 1494–1499, 1992.

    [14]Jinglin Li, Jing Xiao, “Exact and efficient Collision Detection for a multi-section Continuum Manipulator”, 2012 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 4340–4346, 2012.

    [15]N. Baba, N. Kubota, “Collision avoidance planning of a robot manipulator by using genetic algorithm. A consideration for the problem in which moving obstacles and/or several robots are included in the workspace”, Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proc. of the First IEEE Conf. on, Vol. 2, pp. 714–719, 1994.

    [16]Francisco Rubio, Fares J. Abu-Dakka, Francisco Valero and Vicente Mata, “Comparing the efficiency of five algorithms applied to path planning for industrial robots”, Industrial Robot: An Int. J., pp. 580–591, 2012.

    [17]L. W. Tsai and A. Morgan, “Solving the Kinematics of the most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Method”, ASME J. Mech. Des., Vol. 107, pp. 185–200, 1985.

    [18]K. Y. Tsai, I. P. Hsu, and D. Kohli, “Admissible Motions of Special Manipulators”, IEEE Proc. Int. Conf. on Robotics and Automation, Vol. 10, No. 3. pp. 386–391, 1994.

    [19]歐陽妏青,「工業機器人之奇異點分析」,國立台灣科技大學機械工程研究所,2011年7月碩士論文。

    [20]蔡自興(2009),機器人學基礎,大陸:機械工業。

    QR CODE