簡易檢索 / 詳目顯示

研究生: 李欣儒
Hsin-Ju Lee
論文名稱: 虛擬實境頭戴式裝置中 動暈症與瞳孔變化相關性之研究
Research on the Correlation between Cybersickness and Changes in Pupil in Virtual Reality Head-mounted Devices
指導教授: 陳怡永
Yi-Yung Chen
黃忠偉
Jong-Woei Whang
口試委員: 陳怡永
Yi-Yung Chen
黃忠偉
Jong-Woei Whang
孫沛立
Pei-Li Sun
歐立成
Li-Chen Ou
趙一平
Yi-Ping Chao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 63
中文關鍵詞: 虛擬實境動暈症人因實驗瞳孔變化心率變異度虛擬實境頭戴式裝置
外文關鍵詞: virtual reality(VR), cybersickness, pupil size variability, simulator sickness questionnaire, heart rate variability, head-mounted devices
相關次數: 點閱:335下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的發展,虛擬實境(Virtual Reality)頭戴式設備(Head Mounted Device)現已廣泛應用於各個領域,除了給人身臨其境的體驗,也帶來眩暈及不適感,稱之為動暈症(Cybersickness)。因此,近年來,關於虛擬實境中動暈症的討論越來越多,然而少有關於瞳孔變化的討論。本研究探討虛擬實境中瞳孔變化和動暈症的關聯性,評價方法為使用問卷獲得主觀評價以及客觀生理測量的資料分析。 Robert S. Kennedy等人提出的模擬器動暈症疾病問卷包含16種症狀,根據類別不同計算出四種得分,包含噁心、動眼神經不適和迷失方向以及總體得分,可以透過此問卷了解受測者的主觀感受,客觀生理資訊包含瞳孔直徑及心律變異度變化,藉由人因實驗研究不同動暈症程度是否對瞳孔資訊及心律變化有差異,並使用量化方法進行分析。
    在這項研究中,使用HP Reverb G2 Omnicept Edition頭戴式設備記錄30名受測者在虛擬實境實驗中的心率變異度和瞳孔直徑變化,實驗結果表明,在受測者主觀自評動暈症症狀發生,以及心率變異度數據中時域分析指標SDNN和RMSSD皆有顯著下降時,瞳孔大小變化量與動暈症相關,並具有統計上的顯著性,本研究也初步發現主觀評價問卷中的動眼神經不適分數變化量與SDNN值呈正相關;噁心評分與瞳孔大小的變異性呈負相關。討論性別間的差異,分析結果顯示女性受動暈症影響程度較男性嚴重,皮爾森相關係數分析還顯示,男性受試者的SDNN值與噁心、動眼神經不適和總分變化之間存在顯著高度正相關,女性受測者中,SDNN變化量和RMSSD變化量皆與主觀評價中噁心得分變化量之間存在顯著正相關,但難以排除個體差異,故結果有較大的標準差,進一步關於瞳孔及動暈症相關性的研究需要更多的參與者,本研究已初步發現兩者間相關性,但更詳細的關係需要進行更大型的實驗。


    With the development of science and technology, Virtual Reality (VR) head- mounted devices (HMD) are now widely used in various fields. However, besides giving people an immersive experience, they also bring dizziness and discomfort to others. Therefore, increased discussion has raised on topics in cybersickness in virtual reality over the recent years. At present, it is pointed out that the best way to evaluate motion sickness is to use both questionnaires and psycho-physiological measurements. The Simulator Sickness Questionnaire contains 16 types of sickness divided into three categories: nausea, oculomotor, and disorientation. We can subjectively judge the degree of illness through participants' feelings with the questionnaire.
    We propose of to find the correlation between cybersickness and psychophysiological data through conducting VR experiment. In this study, the HP Reverb G2 Omnicept Edition head-mounted device were utilized to record Heart Rate Variability (HRV) and measurements of pupilometer during VR experiment with 30 participants.
    Our experimental results indicated that the metrics of SDNN and RMSSD in HRV data and pupil size variability are also quantitatively associated with SSQ scores. Moreover, we showed that the cyber-sickness oculomotor scores was positively correlated with SDNN values and nausea scores was negatively correlated with pupil size variability.

    摘要 I Abstract III 致謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第1章、 緒論 9 1.1 前言 9 1.2 研究動機與目的 9 1.3 論文架構 13 第2章、 文獻回顧 14 2.1 虛擬實境的應用 14 2.2 動暈症的種類 16 2.2.1 動暈症之成因 16 2.3 主觀評價方法 18 2.3.1 暈眩程度的量化方法 18 2.3.2 模擬器動暈症問卷(Simulator Sickness Questionnaire) 18 2.4 客觀評價方法 19 2.4.1 瞳孔數據 20 2.4.2 心率變異度 20 2.4.3 感官刺激對心率變異度之影響 21 第3章、 研究方法 22 3.1 實驗設計 22 3.1.1 實驗對象 22 3.1.2 實驗環境 23 3.1.3 實驗設備 23 3.1.4 實驗內容 27 3.2 實驗方法 29 3.2.1 實驗流程 29 3.2.2 主觀評價分析 30 3.2.3 客觀評價分析 31 3.2.4 分析方法 32 第4章、 結果與討論 33 4.1 主觀評價分析結果 33 4.2 客觀評價分析結果 35 4.2.1 心率變異度分析結果 35 4.2.2 瞳孔變化量分析結果 36 4.3 動暈症和瞳孔大小之相關性 38 4.4 動暈症和心率變異度之相關性 39 4.5 動暈症與性別 40 4.6 動暈症與暈車程度 44 4.7 實驗局限性 45 第5章、 結論與未來展望 46 5.1 結論 46 5.2 未來展望 47 參考文獻 48 附錄一、Surveycake模擬器動暈症問卷 54 附錄二、基本資料問卷 57 附錄三、受測者實驗前後原始數據 58

    [1] “What Zuckerberg Sees in Oculus Rift | MIT Technology Review.” https://www.technologyreview.com/2014/03/26/13732/what-zuckerberg-sees-in-oculus-rift/ (accessed Jul. 04, 2022).
    [2] “(PDF) Collaboration in Multi-user Immersive Virtual Environment.” https://www.researchgate.net/publication/310802053_Collaboration_in_Multi-user_Immersive_Virtual_Environment (accessed Jul. 14, 2022).
    [3] L. J. Jr., “A discussion of cybersickness in virtual environments,” ACM SIGCHI Bulletin, vol. 32, no. 1, pp. 47–56, Jan. 2000, doi: 10.1145/333329.333344.
    [4] L. Rebenitsch and C. Owen, “Review on cybersickness in applications and visual displays,” Virtual Reality, vol. 20, no. 2, pp. 101–125, Jun. 2016, doi: 10.1007/S10055-016-0285-9/FIGURES/8.
    [5] D. Saredakis, A. Szpak, B. Birckhead, H. A. D. Keage, A. Rizzo, and T. Loetscher, “Factors associated with virtual reality sickness in head-mounted displays: A systematic review and meta-analysis,” Frontiers in Human Neuroscience, vol. 14, p. 96, 2020, doi: 10.3389/FNHUM.2020.00096/BIBTEX.
    [6] N. Martin, N. Mathieu, N. Pallamin, M. Ragot, and J. M. Diverrez, “Virtual reality sickness detection: An approach based on physiological signals and machine learning,” Proceedings - 2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2020, pp. 387–399, Nov. 2020, doi: 10.1109/ISMAR50242.2020.00065.
    [7] S. Jung, R. Li, R. McKee, M. C. Whitton, and R. W. Lindeman, “Floor-vibration VR: Mitigating Cybersickness Using Whole-body Tactile Stimuli in Highly Realistic Vehicle Driving Experiences,” IEEE Transactions on Visualization and Computer Graphics, vol. 27, no. 05, pp. 2669–2680, May 2021, doi: 10.1109/TVCG.2021.3067773.
    [8] T. Magaki and M. Vallance, “Developing an accessible evaluation method of VR cybersickness,” 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019 - Proceedings, pp. 1072–1073, Mar. 2019, doi: 10.1109/VR.2019.8797748.
    [9] T. Magaki and M. Vallance, “Real-time monitoring method for cybersickness using physiological signals,” Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, Nov. 2019, doi: 10.1145/3359996.3364700.
    [10] N. O. Setiowati, T. Wijayanto, and F. Trapsilawati, “Identifying Cybersickness When Wearing a Head-Mounted Display through Heart Rate Variability Data,” IOP Conference Series: Materials Science and Engineering, vol. 885, no. 1, Aug. 2020, doi: 10.1088/1757-899X/885/1/012069.
    [11] M. S. Dennison, A. Z. Wisti, and M. D’Zmura, “Use of physiological signals to predict cybersickness,” Displays, vol. 44, pp. 42–52, Sep. 2016, doi: 10.1016/J.DISPLA.2016.07.002.
    [12] B. John, “Pupil diameter as a measure of emotion and sickness in VR,” Eye Tracking Research and Applications Symposium (ETRA), Jun. 2019, doi: 10.1145/3314111.3322868.
    [13] P. Raiturkar, A. Kleinsmith, A. Keil, A. Banerjee, and E. Jain, “Decoupling light reflex from pupillary dilation to measure emotional arousal in videos,” Proceedings of the ACM Symposium on Applied Perception, SAP 2016, pp. 89–96, Jul. 2016, doi: 10.1145/2931002.2931009.
    [14] L. Li et al., “Application of virtual reality technology in clinical medicine,” American Journal of Translational Research, vol. 9, no. 9, p. 3867, 2017, Accessed: Jul. 31, 2022. [Online]. Available: /pmc/articles/PMC5622235/
    [15] J. N. A. Silva, M. Southworth, C. Raptis, and J. Silva, “Emerging Applications of Virtual Reality in Cardiovascular Medicine,” JACC Basic Transl Sci, vol. 3, no. 3, pp. 420–430, Jun. 2018, doi: 10.1016/J.JACBTS.2017.11.009.
    [16] T. Mazur, T. R. Mansour, L. Mugge, and A. Medhkour, “Virtual Reality–Based Simulators for Cranial Tumor Surgery: A Systematic Review,” World Neurosurgery, vol. 110, pp. 414–422, Feb. 2018, doi: 10.1016/J.WNEU.2017.11.132.
    [17] R. N. McLay et al., “A Randomized, Controlled Trial of Virtual Reality-Graded Exposure Therapy for Post-Traumatic Stress Disorder in Active Duty Service Members with Combat-Related Post-Traumatic Stress Disorder,” https://home.liebertpub.com/cyber, vol. 14, no. 4, pp. 223–229, Apr. 2011, doi: 10.1089/CYBER.2011.0003.
    [18] D. C. Beidel et al., “Trauma management therapy with virtual-reality augmented exposure therapy for combat-related PTSD: A randomized controlled trial,” Journal of Anxiety Disorders, vol. 61, pp. 64–74, Jan. 2019, doi: 10.1016/J.JANXDIS.2017.08.005.
    [19] L. J. Chavez et al., “Virtual Reality Meditation Among Youth Experiencing Homelessness: Pilot Randomized Controlled Trial of Feasibility,” JMIR Ment Health 2020;7(9):e18244 https://mental.jmir.org/2020/9/e18244, vol. 7, no. 9, p. e18244, Sep. 2020, doi: 10.2196/18244.
    [20] I. Cikajlo, U. C. Staba, S. Vrhovac, F. Larkin, and M. Roddy, “A Cloud-Based Virtual Reality App for a Novel Telemindfulness Service: Rationale, Design and Feasibility Evaluation,” JMIR Res Protoc 2017;6(6):e108 https://www.researchprotocols.org/2017/6/e108, vol. 6, no. 6, p. e6849, Jun. 2017, doi: 10.2196/RESPROT.6849.
    [21] A. Gaggioli et al., “Experiential Virtual Scenarios With Real-Time Monitoring (Interreality) for the Management of Psychological Stress: A Block Randomized Controlled Trial,” J Med Internet Res 2014;16(7):e167 https://www.jmir.org/2014/7/e167, vol. 16, no. 7, p. e3235, Jul. 2014, doi: 10.2196/JMIR.3235.
    [22] N. Emard et al., “Virtual Mind-Body Programming for Patients With Cancer During the COVID-19 Pandemic: Qualitative Study,” JMIR Cancer 2021;7(2):e27384 https://cancer.jmir.org/2021/2/e27384, vol. 7, no. 2, p. e27384, Jun. 2021, doi: 10.2196/27384.
    [23] J. Munafo, M. Diedrick, and T. A. Stoffregen, “The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects,” Experimental Brain Research, vol. 235, no. 3, pp. 889–901, Mar. 2017, doi: 10.1007/S00221-016-4846-7/FIGURES/6.
    [24] S. R. Holmes and M. J. Griffin, “Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation,” Journal of Psychophysiology, vol. 15, no. 1, pp. 35–42, 2001, doi: 10.1027//0269-8803.15.1.35.
    [25] D. Huppert, J. Benson, and T. Brandt, “A Historical View of Motion Sickness—A Plague at Sea and on Land, Also with Military Impact,” Frontiers in Neurology, vol. 8, no. APR, Apr. 2017, doi: 10.3389/FNEUR.2017.00114.
    [26] R. S. Kennedy, A. Graybiel, R. C. Mcdonough, and D. Beckwith, “Symptomatology under storm conditions in the North Atlantic in control subjects and in persons with bilateral labyrinthine defects,” Acta Otolaryngol, vol. 66, no. 6, pp. 533–540, 1968, doi: 10.3109/00016486809126317.
    [27] J. Reason and J. Brand, “Motion sickness.,” 1975, Accessed: Jul. 09, 2022. [Online]. Available: https://psycnet.apa.org/record/1976-12574-000
    [28] L. Hettinger, G. R.-P. T. & Virtual, and undefined 1992, “Visually induced motion sickness in virtual environments,” direct.mit.edu, Accessed: Jul. 13, 2022. [Online]. Available: https://direct.mit.edu/pvar/article-abstract/1/3/306/58781
    [29] G. E. Riccio and T. A. Stoffregen, “An ecological Theory of Motion Sickness and Postural Instability,” http://dx.doi.org/10.1207/s15326969eco0303_2, vol. 3, no. 3, pp. 195–240, 2010, doi: 10.1207/S15326969ECO0303_2.
    [30] S. M. Ebenholtz, M. M. Cohen, and B. J. Linder, “The possible role of nystagmus in motion sickness: a hypothesis.,” Aviation, Space, and Environmental Medicine, vol. 65, no. 11, pp. 1032–1035, Nov. 1994, Accessed: Jul. 09, 2022. [Online]. Available: https://europepmc.org/article/med/7840743
    [31] L. Tychsen and P. Foeller, “Effects of Immersive Virtual Reality Headset Viewing on Young Children: Visuomotor Function, Postural Stability, and Motion Sickness,” American Journal of Ophthalmology, vol. 209, pp. 151–159, Jan. 2020, doi: 10.1016/J.AJO.2019.07.020.
    [32] C. Curry, R. Li, N. Peterson, and T. A. Stoffregen, “Cybersickness in Virtual Reality Head-Mounted Displays: Examining the Influence of Sex Differences and Vehicle Control,” https://doi.org/10.1080/10447318.2020.1726108, vol. 36, no. 12, pp. 1161–1167, Jul. 2020, doi: 10.1080/10447318.2020.1726108.
    [33] M. S. Dennison and M. D’Zmura, “Cybersickness without the wobble: Experimental results speak against postural instability theory,” Applied Ergonomics, vol. 58, pp. 215–223, Jan. 2017, doi: 10.1016/J.APERGO.2016.06.014.
    [34] E. Altena et al., “How sleep problems contribute to simulator sickness: Preliminary results from a realistic driving scenario,” Journal of Sleep Research, vol. 28, no. 2, p. e12677, Apr. 2019, doi: 10.1111/JSR.12677.
    [35] C. M. Oman, “A heuristic mathematical model for the dynamics of sensory conflict and motion sickness hearing in classical musicians,” Acta Oto-Laryngologica, vol. 94, no. S392, pp. 4–44, 1982, doi: 10.3109/00016488209108197.
    [36] H. Kim et al., “Clinical predictors of cybersickness in virtual reality (VR) among highly stressed people,” Scientific Reports 2021 11:1, vol. 11, no. 1, pp. 1–11, Jun. 2021, doi: 10.1038/s41598-021-91573-w.
    [37] S. Davis, K. Nesbitt, and E. Nalivaiko, “A Systematic Review of Cybersickness,” Proceedings of the 2014 Conference on Interactive Entertainment, 2014, doi: 10.1145/2677758.
    [38] C. L. Liu, “A neuro-fuzzy warning system for combating cybersickness in the elderly caused by the virtual environment on a TFT-LCD,” Applied Ergonomics, vol. 40, no. 3, pp. 316–324, May 2009, doi: 10.1016/J.APERGO.2008.12.001.
    [39] K. M. T. Pöhlmann, J. Föcker, P. Dickinson, A. Parke, and L. O’Hare, “The relationship between vection, cybersickness and head movements elicited by illusory motion in virtual reality,” Displays, vol. 71, p. 102111, Jan. 2022, doi: 10.1016/J.DISPLA.2021.102111.
    [40] N. Duzmanska, P. Strojny, and A. Strojny, “Can simulator sickness be avoided? A review on temporal aspects of simulator sickness,” Frontiers in Psychology, vol. 9, no. NOV, p. 2132, Nov. 2018, doi: 10.3389/FPSYG.2018.02132/BIBTEX.
    [41] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal, “Simulator Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness,” The International Journal of Aviation Psychology, vol. 3, no. 3, pp. 203–220, 1993, doi: 10.1207/S15327108IJAP0303_3.
    [42] “瞳孔 - A+醫學百科.” http://cht.a-hospital.com/w/%E7%9E%B3%E5%AD%94 (accessed Jul. 10, 2022).
    [43] P. Binda and P. D. Gamlin, “Renewed Attention on the Pupil Light Reflex,” Trends in Neurosciences, vol. 40, no. 8, pp. 455–457, Aug. 2017, doi: 10.1016/J.TINS.2017.06.007.
    [44] S. D. Goldinger and M. H. Papesh, “Pupil Dilation Reflects the Creation and Retrieval of Memories.,” Curr Dir Psychol Sci, vol. 21, no. 2, pp. 90–95, Mar. 2012, doi: 10.1177/0963721412436811.
    [45] D. H. McDougal and P. D. Gamlin, “Autonomic control of the eye,” Compr Physiol, vol. 5, no. 1, pp. 439–473, Jan. 2015, doi: 10.1002/CPHY.C140014.
    [46] C. M. Privitera, L. W. Renninger, T. Carney, S. Klein, and M. Aguilar, “Pupil dilation during visual target detection,” Journal of Vision, vol. 10, no. 10, pp. 3–3, Aug. 2010, doi: 10.1167/10.10.3.
    [47] T. M. Watts, L. Holmes, R. C. Savin-Williams, and G. Rieger, “Pupil Dilation to Explicit and Non-Explicit Sexual Stimuli,” Archives of Sexual Behavior, vol. 46, no. 1, pp. 155–165, Jan. 2017, doi: 10.1007/S10508-016-0801-8/TABLES/2.
    [48] E. Szabadi, “Functional Organization of the Sympathetic Pathways Controlling the Pupil: Light-Inhibited and Light-Stimulated Pathways,” Frontiers in Neurology, vol. 9, p. 1069, Dec. 2018, doi: 10.3389/FNEUR.2018.01069/BIBTEX.
    [49] “A typical ECG signal showing the RR interval. | Download Scientific Diagram.” https://www.researchgate.net/figure/A-typical-ECG-signal-showing-the-RR-interval_fig1_265461491 (accessed Jul. 19, 2022).
    [50] M. Malik et al., “Heart rate variability. Standards of measurement, physiological interpretation, and clinical use,” European Heart Journal, vol. 17, no. 3, pp. 354–381, 1996, doi: 10.1093/oxfordjournals.eurheartj.a014868.
    [51] G. Minarini, “Root Mean Square of the Successive Differences as Marker of the Parasympathetic System and Difference in the Outcome after ANS Stimulation,” Autonomic Nervous System Monitoring - Heart Rate Variability, Feb. 2020, doi: 10.5772/INTECHOPEN.89827.
    [52] M. G. Kang, S. B. Koh, B. S. Cha, J. K. Park, J. M. Woo, and S. J. Chang, “Association between job stress on heart rate variability and metabolic syndrome in shipyard male workers,” Yonsei Med J, vol. 45, no. 5, pp. 838–846, Oct. 2004, doi: 10.3349/YMJ.2004.45.5.838.
    [53] A. Sjörs, J. Dahlman, T. Ledin, B. Gerdle, and T. Falkmer, “Effects of Motion Sickness on Encoding and Retrieval Performance and on Psychophysiological Responses,” Journal of Ergonomics, vol. 4, no. 1, pp. 1–9, 2014, doi: 10.4172/2165-7556.1000124.
    [54] “Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum - PubMed.” https://pubmed.ncbi.nlm.nih.gov/2031631/ (accessed Jun. 07, 2022).
    [55] A. D. Farmer, Y. al Omran, Q. Aziz, and P. L. Andrews, “The role of the parasympathetic nervous system in visually induced motion sickness: systematic review and meta-analysis,” Exp Brain Res, vol. 232, no. 8, pp. 2665–2673, 2014, doi: 10.1007/S00221-014-3964-3.
    [56] L. Salahuddin, J. Cho, M. G. Jeong, and D. Kim, “Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings,” Annu Int Conf IEEE Eng Med Biol Soc, vol. 2007, pp. 4656–4659, 2007, doi: 10.1109/IEMBS.2007.4353378.
    [57] H. J. Baek, C. H. Cho, J. Cho, and J. M. Woo, “Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability,” Telemed J E Health, vol. 21, no. 5, pp. 404–414, May 2015, doi: 10.1089/TMJ.2014.0104.
    [58] A. Mazloumi Gavgani, D. M. Hodgson, and E. Nalivaiko, “Effects of visual flow direction on signs and symptoms of cybersickness,” PLOS ONE, vol. 12, no. 8, p. e0182790, Aug. 2017, doi: 10.1371/JOURNAL.PONE.0182790.
    [59] “HP Reverb G2 Omnicept Edition Specifications | HP® Customer Support.” https://support.hp.com/sg-en/document/c06994662 (accessed Jun. 21, 2022).
    [60] “HP Developers Portal | Fundamentals.” https://developers.hp.com/omnicept/docs/fundamentals?language=ja (accessed Jul. 09, 2022).
    [61] “(15) VR 360 Mars Roller Coaster Video for Oculus Quest HTC Vive and virtual Reality - YouTube.” https://www.youtube.com/watch?app=desktop&v=AK0S2T5hroc (accessed Jun. 21, 2022).
    [62] H. ; Walter, R. ; Li, J. ; Munafo, C. ; Curry, N. ; Peterson, and T. Stoffregen, “A brief explanation of the Simulator Sickness Questionnaire (SSQ) The calculations in the Simulator Sickness Questionnaire None = 0 Slight = 1 Moderate = 2 Severe = 3”, doi: 10.13020/XAMG-CS69.
    [63] M. Udovičić, K. Baždarić, L. Bilić-Zulle, and M. Petrovečki, “What we need to know when calculating the coefficient of correlation?,” Biochemia Medica, vol. 17, no. 1, pp. 10–15, Jun. 2007, doi: 10.11613/BM.2007.002/FULLARTICLE.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2032/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE