簡易檢索 / 詳目顯示

研究生: 彭暘尹
Yang-yin Peng
論文名稱: 二氧化鈰奈米顆粒室溫鐵磁性(RTFM)的研究
The Study of Room-Temperature Ferromagnetism (RTFM) of Cerium (IV) Oxide Nanoparticles
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳良益
Liang-Yih Chen
董崇禮
Chung-Li Dong
宋振銘
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 112
中文關鍵詞: 二氧化鈰室溫鐵磁性摻雜奈米顆粒
外文關鍵詞: Cerium oxide, RTFM, nanoparticles, doping
相關次數: 點閱:216下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用沉澱法製備CeO2 奈米顆粒,首先利用改變合成過程中的沉澱劑(NH4OH) 濃度,控制樣品之粒徑大小,結果發現同時會影響合成顆粒中的Ce3+ 比例。進一步將合成的樣品在還原氣氛 (97%Ar+3%H2) 下,進行一小時到五小時的退火處理,溫度為300oC,再利用XAS吸收光譜分析 Ce的價數變化,搭配磁性量測的結果及粒徑分析,結果發現此還原步驟使樣品中的氧空缺數量增加,且氧空缺較傾向形成在表面;值得注意的是,實驗結果顯示,樣品的飽和磁化強度與樣品中所含的Ce3+ 數量並非成正比,由實驗結果並可推測,當表面的Ce3+ 比例達到約 35%,會有最大的飽和磁化強度 (MS)。另一方面,經由 MCD的分析,我們推測氧確實在磁性產生的過程中扮演相當重要的角色。
另外,為探討摻雜磁性元素對 CeO2 樣品鐵磁性來源之影響,摻雜不同濃度之鐵離子到 CeO2 顆粒中,並進一步將摻雜鐵離子之樣品做氧化還原處理。由 XAS及磁性分析結果,除了建立摻雜量與飽和磁化強度之關係外,並進一步發現摻雜鐵離子之CeO2 奈米顆粒其磁性產生來源有二,一為顆粒表面的氧空缺,另一為所摻雜的鐵離子。本實驗結果將可利用作為後續製備高磁化強度之 CeO2材料之參考。


In order to study the effect of size, oxygen vacancy, and dopant on the ferromagnetism, in this study, CeO2 nanoparticles doping with iron (Fe) were synthesized by using precipitation method and then annealed in Ar +3% H2 at 300oC for 1 to 5 hours. The doping level of Fe ranges from 0 to 11 at%. The results show that the concentration of Ce3+ of nanoparticles varies with the pH value of precursor. XAS analysis and magnetic measurements results find that the concentration of Ce3+ increase with increasing the annealing time. In addition, it is predicted that Ce3+ tends to segregate at the surface of nanoparticles. The concentration dependence of oxygen vacancy on the ferromagnetism was also build up in this study. The saturation moment (Ms) is not proportional to the concentration of Ce3+. The highest Ms value was found in sample of which the concentration of Ce3+ is about 35 %.
At last, the relationship between doping level of Fe and the value of Ms of CeO2 nanoparticles was build up. According to the XAS and magnetic measurement results, it is indicated that the ferromagnetism of Fe doped CeO2 nanoparticles was contributed by two origins. One is the oxygen vacancy and Ce3+ at surface, the other is the oxygen vacancy and Fe3+ in the inner part of particles. The results of this study can be used to prepare CeO2 materials with high Ms values in the future.

中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅴ 圖索引 Ⅸ 表索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機及目的 3 第二章 文獻回顧與理論介紹 4 2.1 磁性理論 4 2.1.1 磁性來源 4 2.1.2 雙交換機制 9 2.1.3 磁性質之分類 12 2.2 奈米顆粒系統未摻雜過渡金屬元素 15 2.3 奈米顆粒系統摻雜過渡金屬元素 19 2.4 二氧化鈰的基本性質 24 2.4.1 物理性質及晶體結構 24 2.4.2 光學性質 25 2.4.3 化學性質 25 2.5 二氧化鈰製備方法 28 2.5.1 物理法 28 2.5.2 化學法 29 2.6 二氧化鈰製備方法 33 第三章 實驗方法 37 3.1藥品及氣體 37 3.2 二氧化鈰奈米顆粒之製備 38 3.2.1 未摻雜之二氧化鈰奈米顆粒 38 3.2.2 摻雜之二氧化鈰奈米顆粒 40 3.3二氧化鈰奈米顆粒之熱處理 41 3.4分析儀器 42 3.2.1 X光粉末繞射儀 42 3.2.2 場發射穿透式電子顯微鏡 42 3.2.3 超導量子干涉磁化儀 43 3.2.4 X光吸收光譜 46 3.2.5感應耦合電漿質譜分析儀 49 第四章 結果與討論 51 4.1未摻雜之二氧化鈰奈米顆粒 51 4.1.1 XRD及TEM分析 51 4.1.2 XAS 分析 57 4.1.3 SQUID 分析 60 4.1.4 MCD分析 62 4.2未摻雜之二氧化鈰奈米顆粒退火 64 4.2.1 XRD及TEM分析 64 4.2.2 XAS分析 67 4.2.3 SQUID分析 69 4.3摻雜鐵之二氧化鈰奈米顆粒 73 4.3.1 XRD及TEM分析 73 4.3.2 XAS分析 76 4.3.3 SQUID分析 80 4.4摻雜鐵之二氧化鈰奈米顆粒退火 82 4.4.1 XRD及TEM分析 82 4.4.2 XAS分析 84 4.4.3 SQUID分析 86 第五章 結論 91 5.1未摻雜之二氧化鈰奈米顆粒 91 5.2摻雜鐵之二氧化鈰奈米顆粒 91 參考文獻 92

[1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, Vol. 287, pp. 1019 (2000)
[2] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Y. Koshihara, and H. Koinuma, Science, Vol. 291, pp. 854 (2001)
[3] W. K. Park, R. J. Ortega-Hertogs, J. Moodera, A. Punnoose, and M. S. Seehra, Journal of Applied Physics, Vol. 91, pp. 8093 (2002)
[4] Y. Matsumoto et al., Japanese Journal of Applied Physics, Part 2, Vol. 40, pp. 1204 (2001)
[5] M. Venkatesan, C. B. Fitzgerald, J. M. D. Coey, Nature, Vol. 430, pp. 630 (2004)
[6] N. H. Hong, J. Sakai, A. Ruyter, and V. Brize, Applied Physics Letters, Vol. 89, pp. 252504 (2006)
[7] N. H. Hong, Joe Sakai, and Ngo Thu Huong, Physical Review B, Vol. 72, pp. 045336 (2005)
[8] N. H. Hong, Joe Sakai, Physical Review B, Vol. 73, pp. 132404 (2006)
[9] Soshin Chikazumi 著,張煦、李學養譯,“磁性物理學”,聯經出版社,(1982)
[10] 郭光揚,二氧化鈦薄膜室溫鐵磁性來源之研究,國立成功大學物理研究所碩士論文,(2007)
[11] 戴道生、錢昆明等著,“鐵磁學”,科學出版社,(2000)
[12] J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nature Materials, Vol. 4, pp. 173 (2005)
[13] D. J. Priour, Jr., E. H. Hwang, and S. D. Sarma, Physical Review letters, Vol. 92, pp. 117201-1 (2004)
[14] C. Zener, Physical Review, Vol. 81, pp.440 (1951)
[15] 蔡銘宮,N-type 薄膜 (La0.7Ce0.3MnO3) 成長與特性研究,國立中山大學物理學系研究所碩士論文,(2008)
[16] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Physical Review B, Vol. 74, pp. 161306 (2006)
[17] Y. Liu, Z. Lockman, A. Aziz and J. MacManus-Driscoll, Journal of Physics: Condensed Matter, Vol. 20, pp. 165201 (2008)
[18] M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, and S. Yan, Applied Physics Letters, Vol. 94, pp. 152511 (2009)
[19] Q. Y. Wen, H. W. Zhang, Y. Q. Song, Q. H. Yang, H. Zhu and J. Q. Xiao, Journal of Physics: Condensed Matter, Vol. 19, pp. 246205 (2007)
[20] X. Chen, G. Li, Y. Su, X. Qiu, L. Li and Z. Zou, Nanotechnology, Vol.20, pp. 115606 (2009)
[21] M. Radovic, Z. Dohcevic-Mitrovic, N. Paunovic, M. •Scepanovic, B. Matovic and Z.V. Popovic, Acta Physica Polonica A, Vol. 116, pp. 84 (2009)
[22] A. Thurber, K. M. Reddy, and A. Punnoose, Journal of Applied Physics, pp. 101 (2007)
[23] S. Maensiri, S. Phokha1, P. Laokul, and S.Seraphin, Journal of Nanoscience and Nanotechnology, Vol.9, pp.6415 (2009)
[24] G. Glaspell and A. Manivannan, Journal of Cluster Science, Vol. 16, pp. 501 (2005)
[25] S. Maensiri, P. Laokul, J. Klinkaewnarong, Journal of Magnetism and Magnetic Materials, Vol. 302, pp. 448 (2006)
[26] A. Manivannan, G. Glaspell, and M. S. Seehra, Journal of Applied Physics, Vol. 94, pp. 6994 (2003)
[27] Paula C.A.Brito, DanielA.A.Santos, Jose Gerivaldo S.Duque, MarceloA.Macedo, Physica B, Vol.405 pp.1821 (2010)
[28] A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays, A. Punnoose, Phsical Review B, Vol. 76, pp. 165206 (2007)
[29] L. Yue, X. M. Zhang, Journal of Alloys and Compounds, Vol. 475, pp. 702 (2009)
[30] T. Morimoto, H. Tomonaga and A. Mitani, Thin Solid Film, Vol. 351, pp.61 (1999)
[31] N. Izu, W. Shin, N. Murayama and S. Kanzaki, Sensors and Actators B: Chemical, Vol. 87, pp. 95 (2002)
[32] M. Tomozawa, Solid State Technology, Vol. 40, pp. 169 (1997)
[33] N. M. Sammes and Z. Cai, Solid State Ionic, Vol. 100, pp. 39 (1997)
[34] D. Schneider, M. Godickemeier and L. J. Gauckler, Journal of Electroceramics, Vol. 1, pp. 165 (1997)
[35] H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg, Encyclopedia of Chemical Technology, John Wiley & Sons, New York, Vol. 5, (1970)
[36] K. A. Gschneidner, Jr. and L. R. Eyring, Handbook on the Physics and Chemistry of Rare Earths, North-Holland, New York, Vol. 3 (1984)
[37] N. V. Skorodumova, R. Ahuja, S. I. Simak, I. A. Abrikosov, B. Johansson, and B. I. Lundqvist, Physical Review B, Vol. 64, pp. 115108 (2001)
[38] S. Phokaa, P. Laokula, E. Swatsitanga, V.Promarakb, S. Seraphinc, and S.Maensiria, Materials Chemistry and Physics, Vol. 115, pp. 423 (2009)
[39] 張宏毅,二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性,國立成功大學化學工程學系博士論文,(2005)
[40] X. L. Song, G. Z. Qiu and P. Qu, Rare Metal Materials and Engineering, Vol. 33, pp. 29 (2004)
[41] P. Patsalas, S. Logothetidis, L. Sygellou and S. Kennou, Physical Review B, Vol. 68, pp. 035104 (2003)
[42] M. Sugiura, Catalysis Surveys from Asia, Vol. 7, pp. 77 (2003)
[43] Y. Liu, Z. Lockman, A. Aziz and J. MacManus-Driscoll, Journal of Physics: Condensed Matter, Vol. 20, pp. 165201 (2008)
[44] X. Chen, G . Li, Y. Su, X. Qiu, L. Li and Z. Zou, Nanotechnology, Vol. 20, pp. 115606 (2009)
[45] V. Boffa, T. Petrisor, S. Ceresara, L. Ciontea, F. Fabbri, P. Scardi, Physica C, Vol. 312, pp. 202 (1999)
[46] L. Wu, H. J. Wiesmann, A. R. Moodenbaugh, R. F. Klie, Y. Zhu, D. O. Welch, and M. Suenaga, Physical Review B, Vol. 69, pp.125415 (2004)
[47] W. C. Tsai and T. Y. Tseng, Journal of Materials Science: Materials in Electronics, Vol. 8, pp. 313 (1997)
[48] J.Liu, L. Wang, H. Wu, L. Mo, H. Lou and X. Zheng, Reaction Kinetics and Catalysis Letters, Vol. 98, pp. 311 (2009)
[49] D.S. Bae, B. Lim, B.I. Kim and K. S. Han, Materials Letters, Vol. 56 pp. 610 (2002)
[50] S. Sathyamurthy, K. J. Leonard, R. T. Dabestani and M. P. Paranthaman, Nanotechnology, Vol. 16, pp.1960 (2005)
[51] M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, and S. Yan, Applied Physics Letters, Vol. 94, pp. 152511 (2009)
[52] S. Gopalan and S. C. Singhal, Scripta Materialia, Vol. 42, pp. 993 (2000)
[53] F. Czerwinski and J. A. Szpunar, Thin Solid Films, Vol. 289, pp. 213 (1996)
[54] N. Izu, I. Matsubara, T. Itoh, W. Shin, and M. Nishibori, Bulletin of the Chemical Society of Japan, Vol. 81, pp.761 (2008)
[55] N. Laosiripojana, S. Assabumrungrat, Applied Catalysis B: Environmental, Vol. 66, pp. 29 (2006)
[56] M. Ozawa, Scripta Materialia, Vol. 50, pp. 61 (2004)
[57] X. D. Zhou, W. Huebner, and H. U. Anderson, Applied Physics Letters, Vol. 80, pp. 3814 (2002)
[58] P. L. Chen and I. W. Chen, Journal of the American Ceramic Society, Vol. 76, pp. 1577 (1993)
[59] J. G. Li, T. Ikegami, Y. Wang, and T. Mori, Journal of the American Ceramic Society, Vol.85, pp. 2376 (2002)
[60] S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya and T. Fukuda, Nanostructured Materials, Vol. 11, pp. 141 (1999)
[61] M. Hirano and E. Kato, Journal of the American Ceramic Society, Vol. 79, pp. 777 (1996)
[62] J. L. G. Fierro, S. Mendioroz and A. M. Olivan, Journal of Colloid and Interface Science, Vol. 107, pp. 60 (1985)
[63] H. I. Chen, and H. Y. Chang, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 242 pp. 61 (2004)
[64] X-Ray Absorption : Principles, Application, Techniques of EXAFS,
SEXAFS, SEXAFS and XANES" , edited by D. C. Koningsberger,
and R. Prins, Chem. Analysis, Vol.92 (Wiley 1988).
[65] D. E. Sayers, E. A. Stern, and F. W. Lytle, Physical Review Letter, Vol.27, pp. 1024 (1971).
[66] Boon K. Teo, EXAFS:Basic Principle and Data Analysis, Springer-
Verlag, New York (1986)
[67] 葉承霖,由 X 光吸收光譜探討以 Fe 當催化層奈米碳管之電子結構,私立淡江大學物理學系研究所碩士論文,(2000)
[68] "EXAFS and Near edge Structure", edited by A. Bianconi, L.
Incoccia and S. Stipcich (Springer-Verlay 1983).
[69] L.A.J. Garviea, P.R. Buseckb, Journal of Physics and Chemistry of Solids, Vol.60, pp.1943 (1999)
[70] C. L. Chang, C. L. Dong and C. L. Huang, Y. Y. Chen, Journal of Applied Physics, Vol.87 pp.3349 (2001)
[71] C.L. Dong, K. Asokan, C.L. Chang, C.L. Chenc, P.C. Lee, P.C. Chen, Y.Y. Chen, J.F. Lee, J.-H. Guo, Journal of Electron Spectroscopy and Related Phenomena, Vol. 152, pp. 1 (2006)
[72] Lubna R Shah, Bakhtyar Ali, H. Zhu, W G Wang, Y Q Song, H W Zhang, S I Shah, and J Q Xiao, Journal of Physics: Condensed Matter, Vol. 21, pp.486004 (2009)

QR CODE