簡易檢索 / 詳目顯示

研究生: 吳柏諭
Bo-Yu Wu
論文名稱: 有機金屬化學氣相沈積之動力研究及材料分析-先驅物:(hfac)CuI(COD)
Kinetics study and material analysis of metalorganic chemical vapor deposition copper films-Precursor: (hfac)CuI(COD)
指導教授: 李嘉平
Chiapyng Lee
口試委員: 顏怡文
Yee-wen Yen
龔耀雄
YAO-XIONG GONG
劉志建
ZHI-JIAN LIU
陳能國
NANG-GUO CHEN
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 151
中文關鍵詞: 銅先驅物化學氣相沈積
外文關鍵詞: copper precursor, chemical vapor deposition
相關次數: 點閱:213下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以有機金屬化合物(hfac)CuI(COD)為先驅物的化學氣相沈積系統探討金屬銅薄膜的成長動力及其材料分析。我們將探討沈積溫度及銅先驅物分壓對反應速率的影響。經由數據分析,探討反應機構及動力模型的建立。另外,探討不同沈積溫度對銅膜的表面型態、結晶結構、微結構及電性的影響。
結果顯示沈積溫度介於120∼190℃時銅膜沈積速率存在於表面控制反應區(Surface reaction limited regime)之內,活化能約18.32KJ/mol。大於沈積溫度190℃時則屬於質傳控制區(Mass transfer limited regime),活化能約0.625KJ/mol。經由動力數據的回歸分析,化學氣相沈積銅膜的Langmuir-Hinshelwood動力模式為:
-ra=k2Pa^2/(1+K1Pa)^2
其中k2=6.96x106(nm*min-1*torr-2),K1=324.54(torr-1)
沈積溫度為190℃時有最佳之銅膜電性。在190℃沈積的銅膜電性較140℃沈積的銅膜為佳的原因是因為銅膜較為緻密平坦及Cu(111)結晶性較佳以致於有較低的晶界電子散射。而在230℃沈積的銅膜電性較190℃沈積的銅膜為差的原因是因為銅晶粒的空隙大且有較高的表面電子散射。


Growth kinetics and material analysis of copper films with metalorganic chemical vapor deposition (MOCVD) reaction system using hexafluoroacetonate-Cu(I)-1,5-cyclooctadiene (hfac)CuI(COD) as the precursor was studied. In this study, the kinetic data of MOCVD Cu thin films as a function of deposition temperature and partial pressure of precursor were investigated. In addition, the effect of different deposition temperatures on the surface morphology、crystal structure、microstructure and film electricity was discussed.
It was found that the growth rate of copper between 120~190℃was written surface reaction limited regime with the value of activation energy as 18.32KJ/mol. Above 190℃, growth rate was in the mass transfer limited regime with an activation energy of 0.652KJ/mol. Through the analysis on the growth kinetics, the kinetic model of chemical vapor deposition as follows:
-ra=k2Pa^2/(1+K1Pa)^2
where k2=6.96x106(nm*min-1*torr-2),K1=324.54(torr-1)
When the deposition temperature was 190℃, the best copper film electricity was obtained. The electricity of copper film, deposited at 190℃ was better than that of the copper films of deposited at 140℃, because the former could grow the flatter and denser copper films, and stronger preferred orientation of Cu(111). As a result, this lowered electron scattering of grain boundary. The electricity of copper films deposited at 230℃ is worse than that of copper films deposited at 190℃, because the former had large voids in the films due to huge copper grains. Consequently, this caused higher surface electron scattering.

中文摘要………………………………………………………………….I 英文摘要…………………………………………………..…………... III 誌謝…………………………………………………………...…...……VI 目錄…………………………………..……………………….………VIII 圖表索引………………………………………………….…………....XI 第一章 緒論………………………………………………………..….1 1.1 前言………………………………………………………….1 1.2 銅的擴散阻障層(Diffusion Barriers)..…...…………………4 1.3 選擇性銅薄膜沉積(selective deposition)…………...………5 第二章 文獻回顧…………………………………………………….….7 2.1 化學氣相沈積銅金屬內連線…………………….…………7 2.2 (hfac)Cu(COD)先驅物文獻回顧……………………….…...10 2.3 研究動機………………………………………...…………..17 第三章 實驗設備與程序………………………………………………..18 3.1 實驗設備.…………………………….…………………….18 3.1.1 合成系統..…..………………………………………..........18 3.1.2 磁控射頻濺鍍系統………………………...………22 3.1.3 低壓化學氣相沉積系統…………………..……….24 3.1.4 滯留時間(Residence Time)之計算…………….…..30 3.2 實驗藥品、材料及分析儀器………………………………33 3.2.1 實驗藥品……………………………………………33 3.2.2 實驗材料……………………………………………34 3.3 實驗程序…………………………………………………..…36 3.4 (hfac)CuI(COD)先驅物的製備……………………….………37 第四章 結果與討論(一)…………………………………………….……39 4.1 先驅物之化學及熱分析……………………………………..39 4.1.1 先驅物(hfac)CuI(COD)的化學分析…………….…39 4.1.2 合成之先驅物(hfac)CuI(COD)的熱分析………….40 4.2 TaN薄膜的成長………………………………………....…44 4.2.1 TaNX薄膜之製備…………………………………….44 4.2.2 TaNx的材料特性分析………………………….…….45 4.3 以(hfac)CuI(COD)為先驅物之銅膜沈積的CVD動力研究50 4.3-1 沈積溫度對沈積速率之效應………………………..50 4.3-2 潛伏期(Incubation time)之探討……………………..52 4.3-3 (hfac)CuI(COD)分壓對沈積速率之影響…………….66 4.3-3-1 先驅物分壓之量測………………………………...66 4.3-3-2 反應器的先驅物分壓對沈積速率之效應………...70 4.4-3-3 探討(hfac)CuI(COD)沉積在TaN0.82的機制…...….73 第五章 結果與討論(二)………………………………….………………..81 5.1由化學氣相沈積法所成長銅膜之材料分析……………….….81 5.1.1 沈積溫度效應…………………………………………81 5.1.2 沈積時間效應………………………………………..102 5.1.3 銅膜電性探討………………………………………..132 第六章 結論………………………………………………………………137 第七章 參考文獻………………………….…………………….………..141 附錄………………………………………………………………..…...…145 符號索引………………………………………………………………….150 作者簡介…………………………...……………………………………..151

(1) K.K Choi, S.W Rhee*, Thin solid films 2001, 397, 70-77.
(2) S. P. Murarka, R. J. Gutmann, A. E. Kaloyerors and W. A.Lanford, Thin
Solid Films 1993, 236, 257.
(3) C. Y. Chang, S. M. Sze, ULSI Technology, the McGRAW-HILL 1996, 663.
(4) H. Ono, T. Nakano, T. Ohta, Applied Physics Letters 1994, 64, 1511.
(5) E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela, M. A.Nicolet, Journal
of Applied Physics 1991, 70, 1369.
(6) P. Doppelt, Microelectronic Engineering 1997, 37/38, 89.
(7) P. Motte, J. Torres, J. Palleau, F. Tardif, O. Demolliens,H. Bernard,
Microelectronic Engineering 2000, 50, 487.
(8) C. Steinbrüchel, Applied surface science 1995, 91, 139.
(9) Z. Stavreva, D. Zeidler, M. PlÖtner, K. Drescher, Applied surface
science 1995, 91, 192.
(10) P. Doppelt, M. Stelzle, Microelectronic Engineering 1997, 33,15.
(11) J.Reid, V. Bhaskaran, R. Contolini, E. Patton, R.Jackson, E. Broadbent,
T. Walsh, S. Mayer, R. Schetty,J. Martin, M. Toben, S. Menard, Proc.
IITC 99, IEEE 1999,284.
(12) K. Weiss, S. Riedel, S. E. Schulz, M. Schwerd, H.Helneder, H. Wendt, T.
Gessner, Microelectronic Engineering 2000, 50, 433.
(13) Y. Lantasov, R. Palmans, K. Maex, Microelectronic Engineering
2000, 50, 441.
(14) G. Margraf , H.-W. Lerner , M. Wagner , M. Bolte , Acta
Crystallographica Section E 2004, 60, 186-187.
(15) Tai Yuan Chen, Laurent Omnès, Jacqueline Vaisserman ,Pascal Doppelt ,
Inorganica Chimica Acta 2004, 357, 1299-1302.
(16) S. Vidal, F. Maury, A. Gleizes and C. Mijoule, Applied Surface Science
2000, 168, 57-60.
(17) Albertina Cabañas, Jason M. Blackburn , James J. Watkins,
Microelectronic Engineering 2002, 64, 53-61.
(18) Pascal Doppelt 1 and Thomas H. Baum, Journal of Organometallic
Chemistry .1996, 517, 53-62.
(19) Mikko Utriainen, Minna Kröger-Laukkanen, Leena-Sisko Johansson, Lauri
Niinistö, Applied Surface Science 2000, 157, 151-158.
(20) Maverick AW , Fronczek FR , Maverick EF , Billodeaux DR ,
Cygan ZT , Isovitsch RA ,Inorg Chem. 2002.41.6488-6492.
(21) S.W Rhee, S.W Kang, S.H Han, Eletrochemical and Solid-State Letters.
2000. 3. 135-347.
(22) G. Doyle, K. A. Eriksen, and D. V. Engen, Organometallics. 1985. 4. 830-
835.
(23) K. M. Chi, H.-K. Shin, M. J. Hampden-Smith, E. N. Duesler, and T. T.
Kodas, Polyhedron 1991. 10. 2293-2297.
(24) R. Kumar, F. R. Fronczek, A. W. Maverick, W. G. Lai, and G. L. Griffin,
Chemistry of Materials 1992. 4. 577-581.
(25) T. H. Baum and C. E. Larson, Journal of the electrochemical
society,1993. 140. 154-160.
(26) L. H. Dubois and B. R. Zegarski, Journal of the electrochemical society
1992.139.3295-3333.
(27) S. L. Cohen, M. Liehr, and S. Kasi, Journal of Vacuum Science and
Technology A 1992, 10, 863-870.
(28) T. Q. Cheng, K. Griffiths, P. R. Norton, and R. J. Puddephatt, Applied
surface science 1998, 126, 303-311.
(29) S. K. Reynolds, C. J. Smart, E. F. Baran, T. H. Baum, C. E. Larson, and
P. J. Brock, Applied Physics Letters 1991,59, 2332-2337.
(30) S. L. Cohen, Michael Liehr, and Kasi, Applied Physics Letters 1992, 60,
50-56.
(31) A. Jain, K. M. Chi, M. J. Hampden-Smith, T. T. Kodas, J. D. Farr, and
M. F. Paffett, Journal of Materials Research,1992,7,261-269.
(32) C. Roger, T. S. Corbitt. M. J. Hampden-Smith, and T. T. Kodas, Applied
Physics Letters 1994,65,1021.
(33) S. L. Cohen, M. Liehr, and S. Kasi, Journal of Vacuum Science and
Technology A 1992,10, 863-870.
(34) 龔耀雄,“薄膜的化性”,國立台灣科技大學化工所(1995).
(35) D. A. Skoog, J. J. Leary, Principles of Instrumental Analysis, Fourth
Edition, Harcount Brace College Publishers, 1991,275.
(36) 林俊成,“RF濺鍍成長TaNx薄膜及其在積體電路之銅製程上的應用”, 國立台灣科
技大學化工所(1998).
(37) 鄭穆光“以有機金屬Cu(hfac)(VTMOS)為化學氣相沈積先趨物合成金屬銅膜的研
究”, 國立台灣科技大學化工所(1998).
(38) A. Jain, K. M. Chi, T. T. Kodas, and M. J. Hampden-Smith, The
Electrochemical Society, 1993, 140, 1434.
(39) Mehul B. Naik, Satish K. Lakshmanan, R. H. Wentorf, Robert R. Reeves
and William N. Gill, Journal of Crystal Growth, 1998, 193, 133-147.
(40) J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, 1995, Handbook
of X-Ray Photoelectron Spectroscopy, Physical Electronics, Inc.
(41) Y. K. Chae and H. Komiyama, Journal of Applied Physics, 2001, 90, 3610-
3613.

QR CODE