簡易檢索 / 詳目顯示

研究生: 林文賓
Wen-Pin Lin
論文名稱: 利用UV誘導化學接枝與化學氣相沉積法 改質氟矽丙烯酸酯之表面
UV Induced Grafting Polymerization and Plasma Enhanced Chemical Vapor Deposition Methods for the Surface Modifications of Fluorosilicone Acrylate
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 魏大欽
Ta-Chin Wei
朱義旭
Yi-Hsu Ju
Sheng-Shih Wang
王勝仕
吳宛儒
Wan-Ru Wu
王宗仁
Tsung-Jen Wang
劉志宏
Chih-Hung Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 182
中文關鍵詞: 電漿改質親水性疏水性回復生物相容性抗沾黏
外文關鍵詞: Plamsa modification, biocombatibility, hydrophobicity recovery, anti-biofouling, hydrophilicity
相關次數: 點閱:472下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高透氧硬性隱形眼鏡 (rigid gas permeable contact lens, RGP lens),以下簡稱RGP,RGP主要是由氟矽丙烯酸酯 (Fluoro-silicone acrylate, FSA) 組成。RGP可有效矯正不同類型的屈光不正,RGP表面通常具疏水性質,因此在配戴RGP者眨眼後,淚液無法完全均勻地分布在RGP表面,同時也可能因脂質和蛋白質沉積物沉積,造成眼睛的不適。本研究利用真空電漿改質法並優化參數:電漿功率、處理時間、氣體流率及腔體壓力再經由RGP表面水接觸角的測量與探討RGP的儲存環境對親水性的影響。經再現性實驗顯示最適化後的電漿參數是:80 W /120 s /10 sccm / 100 mTorr。在評估儲存環境對經電漿改質RGP表面親水性的影響,本論文在探討儲存環境時發現低溫、生理食鹽水與含有親水因子的多功能護理液(MPS)中可延長RGP表面的親水性,但即使將電漿改質後的RGP儲存在低溫及MPS,經過30天觀察期後RGP表面的水接觸角仍因疏水性回復至約60°。
    電漿改質產生的親水性效果通常會因疏水性回復在一段時間後失效,因此本論文第二部分應用UV誘導化學接枝與化學氣相沉積法製備薄膜於RGP表面,以達長期的親水性與抗沾黏效果。在UV誘導N-乙烯基-2-吡咯酮 (N-vinyl-2-pyrrolidone, NVP) 及甲基丙烯酸聚乙二醇酯 (poly (ethylene glycol)methacrylate, PEGMA) 聚合接枝於RGP表面方面,可增加RGP表面的親水性且不會影響其生物相容性。經過120天的觀察期水接觸角為27°。本實驗將誘導NVP/PEGMA聚合接枝的RGP進行生物相容性測試、物性及化性的分析,實驗結果顯示誘導NVP/PEGMA聚合接枝的RGP不會改變其生物相容性、物性及化性,經統計學one-way ANOVA分析結果無顯著差異。在利用化學輔助氣相沉積法 (PECVD) 方面,將PEGMA/NVP沉積在RGP表面,同樣經120天的觀察期,其水接觸角為24°且PECVD的膜層較UV誘導聚合接枝更均勻並能減少廢液的產生對環境的影響更少。


    Rigid gas permeable (RGP) contact lenses are composed mainly of fluorosilicone acrylates (FSA) / with polymethyl methacrylate (PMMA). The surface of RGP contact lens is generally hydrophobic; therefore, after blinking, the tear cannot be spread evenly over the surface of the lens surface and this will result in discomfort for the eye. Low-temperature plasma is one of the most commonly applied methods to increase the surface hydrophilicity of the RGP contact lens. However, plasma treated lenses often were reported to have problems of aging and hydrophobicity recovery within a certain period of time after treatement. Protein ans lipids deposited on RGP contact lenses are due to the equilibrium state of surface hydrophobicity and hydrophilicity of materials. Therefore, this study aims to apply argon plasma and N-vinyl-2- pyrrolidone (NVP) / poly (ethylene glycol methyl ether methacrylate) (PEGMA) coatings on contact lens to investigate the changes on lens surface properties.
    In this study, the wettability of the contact lens treated by argon plasma was investigated by water contact angle measurements to find the optimum storage conditions (temperature and environment) and plasma treatment parameters (applied power, flow rate, pressure, and treatment time). Additionally, the effects of the storage time on surface wettability of lens were evaluated after 30 days of storage. The correlations between hydrophobicity recovery and plasma parameters showed that optimized plasma treatment conditions were with 80 W argon plasm, 120 seconds treatment, by using 10 sccm flow rate under 100 mTorr. However, even through RGP was plasma treated with this optimized parameter, the water contact angle on the surface of RGP increased from 37° at day one to 59° at day 7 because of hydrophobic recovery.
    The FTIR analyses confirmed that there was no significant difference between the surface of RGP before and after argon plasma treatment. Based on ISO 18369-4, the results of polarographically for oxygen transport showed that there was no significant difference for DK, light transmittance, cytotoxicity, and cell viability. Moreover, protein adsorption and antibacterial potency tests show significant reduction of adsorbed protein, and no inhibition efficacy toward Staphylococcus Aureus.
    In addition to plasma treatment, this study also applied UV induced grafting polymerization (UV-IGP) and plasma enhanced chemical vapor deposition (PECVD) of NVP/PEGMA to promote hydrophilicity and resistance to protein and bacteria on RGP. FTIR analysis confirmed the success of graft polymerization of NVP and PEGMA on the surface of RGP contact lens. Moreover, the cytotoxicity and cell viability of the NVP/PEGMA grafted RGP contact lenses were evaluated by cultivation of L-929 fibroblasts and through lactic dehydrogenase (LDH) assays.
    The preliminary results showed that on the grafted RGP contact lens there was a significant reduction of adsorbed protein. In addition, PEGMA grafted RGP showed better efficacy for the reduction of protein adsorption than the NVP grafted ones. In addition, the antibacterial tests performed on the treated RGP contact lens exhibited inhibition efficacy toward the growth of Staphylococcus Aureus. This study shows great potential for the plasma grafting technology in the modification of contact lenses. Comparing to UV-IGP, PECVD can produce a thinner and more uniform coating on the RGP contact lens surface and has lower environmental impact.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 符號索引 VIII 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標 3 1.3 論文總覽 4 第二章 文獻回顧 5 2.1 電漿簡介 5 2.2 電漿改質 6 2.3 電漿改質在生醫材料的應用 7 2.4 增加表面親水性 7 2.5 以電漿改質改善RGP表面的親水性 8 2.6 儲存環境與疏水性回復 9 2.7 醫療器材與親水性高分子 11 第三章 實驗儀器與方法 13 3.1 實驗藥品 13 3.2 細胞培養液 14 3.3 LACTATE DEHYDROGENASE ASSAY (LDH) 溶液 14 3.4 體外細胞毒性實驗-MTT法 14 3.5 急性系統毒實驗 15 3.6 眼刺激實驗 15 3.7 皮膚敏感性實驗 15 3.8 22天連續配戴眼刺激實驗 15 3.9實驗設備與器材 16 3.9.1 電漿系統 16 3.9.2 水接觸角量測 (Water contact angle, WCA) 16 3.9.3 傅立葉轉換紅外光光譜儀 (FTIR) 16 3.9.4 X射線光電子能譜儀 (XPS) 17 3.9.5 MTS Criterion 40系列伺服馬達式靜態萬能材料測試機 17 3.9.6 洛氏硬度計 17 3.9.7 紫外線/可見光光譜儀 (UV/Visible Spectrometer) 17 3.9.8 極譜法透氧儀 18 3.9.9 原子力顯微鏡 (AFM) 18 3.9.10 橢圓偏光儀 (Spectroscopic Ellipsometer) 19 3.9.11統計學分析 (Statistical analysis) 19 3.10 實驗方法 20 3.10.1 探討氬氣電漿最適化參數 20 3.10.2 RGP材料表面元素 21 3.10.3 電漿RGP生物相容性測試 (L-929貼附量) 21 3.10.4 電漿改質RGP之蛋白質濃度測試 22 3.10.5 電漿RGP抗菌效果測試 26 3.10.6 電漿RGP可見光穿透測試 26 3.11 UV光誘導聚合接枝處理技術 26 3.11.1 以benzophenone為光起始劑 26 3.11.2 以2-Hydroxy-2-methylpropiophenone (HMPP) 為光起始劑 27 3.11.3 以最適化氬氣電漿參數對RGP實施電漿處理後,再以HMPP為光起始劑進行UV誘導聚合接枝 32 3.11.4 生物相容實驗 34 3.11.4.1 體外細胞毒性實驗:MTT法 34 3.11.4.2 眼刺激實驗 37 3.11.4.3 急性系統毒實驗 39 3.11.4.4 皮膚敏感性實驗 41 3.11.5 可見光穿透率 44 3.11.6 RGP基材的機械性質實驗 44 3.11.7 洛氏硬度 44 3.11.8 RGP傳氧率 45 3.11.9 RGP蛋白貼附測試 46 3.11.10 RGP抗菌性 46 3.12 電漿輔助化學氣相沉積技術 46 3.12.1 PEGMA氣化程序 47 3.12.1.1傅立葉轉換紅外光譜分析 (FTIR spectra analysis) 47 3.12.1.2 橢圓偏光法分析 (Ellipsometry analysis) 47 3.12.2 NVP氣化程序 48 3.12.2.1 傅立葉轉換紅外光譜分析 (FTIR spectra analysis) 48 3.12.2.2 橢圓偏光法分析 (Ellipsometry analysis) 48 3.12.3 PEGMA/NVP 氣化程序 48 3.12.3.1 傅立葉轉換紅外光譜分析 (FTIR spectra analysis) 48 3.12.3.2 橢圓偏光法分析 (Ellipsometry analysis) 48 3.12.3.3 疏水性回復觀察 48 3.12.3.4連續配戴22天眼刺激實驗 49 第四章 結果與討論 52 4.1 探討氬氣電漿應用於RGP基材的最適化參數 53 4.2 儲存環境與疏水性回復 57 4.2.1 RGP材料表面元素寬掃描 60 4.2.2 RGP基材化學官能基 60 4.2.3 以傅立葉紅外線光譜儀分析RGP電漿改質之前與之後的化學官能基 61 4.2.4 RGP電漿表面改質前後生物相容性測試 69 4.2.5 RGP電漿改質的抗蛋白貼附分析測試 70 4.2.6 電漿改質RGP的抗菌貼附測試 71 4.2.7 電漿改質RGP的可見光穿透率測試 71 4.2.8 電漿改質RGP的傳氧率測試 73 4.3 利用UV聚合NVP/PEGMA接枝在RGP表面 73 4.3.1 以benzophenone為光起始劑 74 4.3.2 以2-Hydroxy-2-methylpropiophenone (HMPP) 為光起始劑 76 4.3.3 以最適化參數的氬氣電漿對RGP實施電漿處理後,再以HMPP為光起始劑進行UV誘導聚合接枝 79 4.3.4 UV誘導聚合NVP/PEGMA接枝在RGP表面的生物相容性測試 87 4.3.4.1 細胞貼附測試 87 4.3.4.2 體外細胞毒性實驗:MTT法 88 4.3.4.3 細胞形態測試 89 4.3.4.4 眼刺激實驗 90 4.3.4.5 急性系統毒實驗 91 4.3.4.6 皮膚敏感性實驗 92 4.3.5 UV誘導聚合NVP/PEGMA接枝在RGP表面的可見光穿透率測試 93 4.3.6 UV誘導聚合NVP/PEGMA接枝在RGP表面的透氧率分析測試 94 4.3.7 UV誘導聚合NVP/PEGMA接枝在RGP表面的表面粗糙度分析測試 96 4.3.8 UV誘導聚合NVP/PEGMA接枝在RGP表面的機械性質測試 97 4.3.8.1 UV誘導聚合NVP/PEGMA接枝在RGP表面的韌性分析 98 4.3.8.2 UV誘導聚合NVP/PEGMA接枝在RGP基材表面的楊氏模數分析 98 4.3.8.3 UV誘導聚合NVP/PEGMA接枝在RGP基材表面的拉伸強度分析 99 4.3.8.4 UV誘導聚合NVP/PEGMA接枝在RGP基材表面的斷裂伸長率分析 99 4.3.8.5 UV誘導聚合NVP/PEGMA接枝在RGP鏡片表面的洛式硬度分析 99 4.3.9 UV誘導聚合NVP/PEGMA接枝在RGP表面的抗蛋白貼附分析測試 100 4.3.10 UV誘導聚合NVP/PEGMA接枝在RGP表面的抗菌貼附測試 100 4.4 利用PECVD沉積PEGMA/NVP 101 4.4.1 利用PECVD沉積PEGMA在RGP表面 102 4.4.2 利用PECVD沉積NVP在RGP表面 105 4.4.3 利用PECVD沉積PEGMA/NVP在RGP表面 107 4.4.4 利用PECVD沉積PEGMA/NVP 的RGP生物相容性測試 115 4.4.4.1 體外細胞毒性實驗:MTT法 115 4.4.4.2 眼刺激實驗 115 4.4.4.3 急性系統毒實驗 116 4.4.4.4 22天連續配戴眼刺激實驗 117 4.4.5 利用PECVD沉積PEGMA/NVP的RGP可見光穿透率測試 118 4.4.6 透過PECVD沉積PEGMA/NVP的RGP透氧率測試 119 4.4.7 利用PECVD沉積PEGMA/NVP的RGP表面粗糙度分析測試 120 4.4.8 透過PECVD沉積PEGMA/NVP的RGP機械性質測試 121 4.4.9 透過PECVD沉積PEGMA/NVP的RGP抗蛋白貼附測試 122 4.4.10 利用PECVD沉積PEGMA/NVP的RGP抗菌貼附分析測試 123 4.5 UV誘導聚合接枝VS. PECVD的疏水性回復 123 4.6 儲存在不同環境下RGP的表面元素分析 125 第五章 結論 128 5.1 氬氣電漿的最適化表面處理參數 128 5.2 以UV誘導NVP/PEGMA聚合接枝在RGP表面 128 5.3 以PECVD沉積PEGMA/NVP的RGP 129 5.4 總結 130 口試委員的建議及問題 131 第六章 參考文獻 136 APPENDIX 143

    1. Lin, H.-J.; Wan, L.; Tsai, F.-J.; Tsai, Y.-Y.; Chen, L.-A.; Tsai, A.; Huang, Y.-C., Overnight orthokeratology is comparable with atropine in controlling myopia. BMC Ophthalmol. 2014, 14 (1), 40.
    2. The IACLE Contact Lens Course The International Association of Contact Lens Educators: Australia, 2000.
    3. Ibrahim, Y. W.; Boase, D. L.; Cree, I. A., How Could Contact Lens Wearers Be at Risk of Acanthamoeba Infection? A Review. Journal of Optometry 2009, 2 (2), 60-66.
    4. Jung, J.; Rapp, J., The efficacy of hydrophilic contact lens cleaning systems in removing protein deposits. CLAO J. 1993, 19 (1), 47-9.
    5. Luensmann, D.; Jones, L., Protein deposition on contact lenses: the past, the present, and the future. Contact lens & anterior eye : the journal of the British Contact Lens Association 2012, 35 (2), 53-64.
    6. Taylor, R. L.; Willcox, M. D.; Williams, T. J.; Verran, J., Modulation of bacterial adhesion to hydrogel contact lenses by albumin. Optometry and vision science : official publication of the American Academy of Optometry 1998, 75 (1), 23-9.
    7. Santos, L.; Rodrigues, D.; Lira, M.; Real Oliveira, M. E.; Oliveira, R.; Vilar, E. Y.; Azeredo, J., Bacterial adhesion to worn silicone hydrogel contact lenses. Optometry and vision science : official publication of the American Academy of Optometry 2008, 85 (7), 520-5.
    8. Miller, M. J.; Wilson, L. A.; Ahearn, D. G., Effects of protein, mucin, and human tears on adherence of Pseudomonas aeruginosa to hydrophilic contact lenses. J. Clin. Microbiol. 1988, 26 (3), 513-517.
    9. Rediske, A. M.; Koenig, A. L.; Barekzi, N.; Ameen, L. C.; Slunt, J. B.; Grainger, D. W., Polyclonal human antibodies reduce bacterial attachment to soft contact lens and corneal cell surfaces. Biomaterials 2002, 23 (23), 4565-4572.
    10. Castillo, E. J.; Koenig, J. L.; Anderson, J. M.; Lo, J., Protein adsorption on hydrogels. Biomaterials 1985, 6 (5), 338-345.
    11. Senchyna, M.; Jones, L.; Louie, D.; May, C.; Forbes, I.; Glasier, M. A., Quantitative and conformational characterization of lysozyme deposited on balafilcon and etafilcon contact lens materials. Curr. Eye Res. 2004, 28 (1), 25-36.
    12. Porazinski, A. D.; Donshik, P. C., Giant papillary conjunctivitis in frequent replacement contact lens wearers: a retrospective study. CLAO J. 1999, 25 (3), 142-7.
    13. Pritchard, N.; Fonn, D.; Brazeau, D., Discontinuation of contact lens wear: a survey. International Contact Lens Clinic 1999, 26 (6), 157-162.
    14. Gellatly, K. W.; Brennan, N. A.; Efron, N., Visual decrement with deposit accumulation of HEMA contact lenses. Am. J. Optom. Physiol. Opt. 1988, 65 (12), 937-41.
    15. Lin, C. H.; Yeh, Y. H.; Lin, W. C.; Yang, M. C., Novel silicone hydrogel based on PDMS and PEGMA for contact lens application. Colloids and surfaces. B, Biointerfaces 2014, 123, 986-94.
    16. Nilsson, S. E.; Andersson, L., Contact lens wear in dry environments. Acta ophthalmologica 1986, 64 (2), 221-5.
    17. Chow, L. M.; Subbaraman, L. N.; Sheardown, H.; Jones, L., Kinetics of in vitro lactoferrin deposition on silicone hydrogel and FDA group II and group IV hydrogel contact lens materials. J. Biomater. Sci. Polym. Ed. 2009, 20 (1), 71-82.
    18. Bogaerts, A.; Chen, Z.; Gijbels, R.; Vertes, A., Laser ablation for analytical sampling: what can we learn from modeling? Spectrochimica Acta Part B: Atomic Spectroscopy 2003, 58 (11), 1867-1893.
    19. Michelmore, A.; Steele, D. A.; Whittle, J. D.; Bradley, J. W.; Short, R. D., Nanoscale deposition of chemically functionalised films via plasma polymerisation. RSC Advances 2013, 3 (33), 13540-13557.
    20. Kuo, Y., Plasma enhanced chemical vapor deposited silicon nitride as a gate dielectric film for amorphous silicon thin film transistorsöa critical review. Vacuum 1998, 51 (4), 741-745.
    21. Hu, X.; Zhao, G.-B.; Zhang, J.-J.; Wang, L.; Radosz, M., Nonthermal-Plasma Reactions of Dilute Nitrogen Oxide Mixtures:  NOx-in-Argon and NOx + CO-in-Argon. Ind. Eng. Chem. Res. 2004, 43 (23), 7456-7464.
    22. Kwok, C. S.; Horbett, T. A.; Ratner, B. D., Design of infection-resistant antibiotic-releasing polymers. J. Control. Release 1999, 62 (3), 301-311.
    23. David, S.; Bakhtier, F.; Alexander, G.; Alexander, F., Characterization of a dc atmospheric pressure normal glow discharge. Plasma Sources Science and Technology 2005, 14 (4), 700.
    24. Donkó, Z., Hybrid model of a rectangular hollow cathode discharge. Physical Review E 1998, 57 (6), 7126-7137.
    25. Webb, M. R.; Hieftje, G. M., Spectrochemical Analysis by Using Discharge Devices with Solution Electrodes. Anal. Chem. 2009, 81 (3), 862-867.
    26. Vesel, A.; Mozetic, M., Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum 2012, 86 (6), 634-637.
    27. Loh, J. H., Plasma surface modification in biomedical applications. Med. Device Technol. 1999, 10 (1), 24-30.
    28. Shin, H. S.; Jang, J. K.; Kwon, Y. S.; Mah, K. C., Surface Modification of Rigid Gas Permeable Contact Lens Treated by Using a Low-Temperature Plasma in Air. Journal of the Korean Physical Society 2009, 55 (6), 2436-2440.
    29. 尹詩衡. 角膜修复材料表面等离子体改性与表面性能研究 竿南理工大字, 2011.
    30. van der Worp, E.; De Brabander, J.; Swarbrick, H.; Nuijts, R.; Hendrikse, F., Corneal in rigid contact lens wear: 3- and 9-o'clock staining. Optometry and vision science : official publication of the American Academy of Optometry 2003, 80 (4), 280-90.
    31. Bontempo, A. R.; Rapp, J., Lipid deposits on hydrophilic and rigid gas permeable contact lenses. CLAO J. 1994, 20 (4), 242-5.
    32. Rankin, B. F.; Trager, S. F., WETTING OF CONTACT LENSES*. Optom. Vis. Sci. 1970, 47 (9), 698-702.
    33. Seidner, L.; Sharp, M., Surface deposits with gas permeable lenses. CL Forum 1984, 9, 55-65.
    34. Bacharouche, J.; Haidara, H.; Kunemann, P.; Vallat, M.-F.; Roucoules, V., Singularities in hydrophobic recovery of plasma treated polydimethylsiloxane surfaces under non-contaminant atmosphere. Sensors and Actuators A: Physical 2013, 197, 25-29.
    35. Mortazavi, M.; Nosonovsky, M., A model for diffusion-driven hydrophobic recovery in plasma treated polymers. Applied Surface Science 2012, 258 (18), 6876-6883.
    36. Novák, I.; Pollak, V.; Chodak, I., Study of surface properties of polyolefins modified by corona discharge plasma. Plasma Processes and Polymers 2006, 3 (4‐5), 355-364.
    37. Bormashenko, E.; Chaniel, G.; Grynyov, R., Towards understanding hydrophobic recovery of plasma treated polymers: Storing in high polarity liquids suppresses hydrophobic recovery. Applied Surface Science 2013, 273 (0), 549-553.
    38. Evans, S. D.; Sharma, R.; Ulman, A., Contact angle stability: reorganization of monolayer surfaces? Langmuir 1991, 7 (1), 156-161.
    39. Nakamatsu, J.; Delgado-Aparicio, L. F.; Da Silva, R.; Soberon, F., Ageing of plasma-treated poly(tetrafluoroethylene) surfaces. Journal of Adhesion Science and Technology 1999, 13 (7), 753-761.
    40. Nyman, M.; Nordholm, A.; Westman, E. H., Medical device with controllably releasable antibacterial agent. Google Patents: 2010.
    41. Sun, F.-q.; Li, X.-s.; Cao, P.-t.; Xu, J.-k., Enhancing hydrophilicity and protein resistance of silicone hydrogels by plasma induced grafting with hydrophilic polymers. Chin J Polym Sci 2010, 28 (4), 547-554.
    42. Ren, L.; Yin, S.; Zhao, L.; Wang, Y.; Chen, H.; Qu, J., Study on the surface of fluorosilicone acrylate RGP contact lens treated by low-temperature nitrogen plasma. Applied Surface Science 2008, 255 (2), 473-476.
    43. Normalizacyjny, P. P. K., Biological Evaluation of Medical Devices - Part 5: Tests for in Vitro Cytotoxicity (ISO 10993-5:2009). Polski Komitet Normalizacyjny: 2009.
    44. Liu, Z.-M.; Xu, Z.-K.; Wang, J.-Q.; Wu, J.; Fu, J.-J., Surface modification of polypropylene microfiltration membranes by graft polymerization of N-vinyl-2-pyrrolidone. European Polymer Journal 2004, 40 (9), 2077-2087.
    45. Abd El-Mohdy, H. L., Controlled release of testosterone propionate based on poly N-vinyl pyrrolidone/2-acrylamido-2-methyl-1-propanesulfonic acid hydrogels prepared by ionizing radiation. J Polym Res 2012, 19 (8), 1-14.
    46. Liu, Z.-M.; Xu, Z.-K.; Wan, L.-S.; Wu, J.; Ulbricht, M., Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach. Journal of Membrane Science 2005, 249 (1–2), 21-31.
    47. Khelifa, F.; Ershov, S.; Habibi, Y.; Snyders, R.; Dubois, P., Free-Radical-Induced Grafting from Plasma Polymer Surfaces. Chem. Rev. 2016, 116 (6), 3975-4005.
    48. Hosseini, S.; Ibrahim, F.; Djordjevic, I.; Koole, L. H., Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst 2014, 139 (12), 2933-43.
    49. Kang, E. T.; Tan, K. L.; Kato, K.; Uyama, Y.; Ikada, Y., Surface Modification and Functionalization of Polytetrafluoroethylene Films. Macromolecules 1996, 29 (21), 6872-6879.
    50. Biological evaluation of medical devices- Part 10: Tests for irritation and skin sensitization, ISO 10993-10:. 2010.
    51. Biological evaluation of medical devices-Part 12: Sample preparation and reference materials ISO10993-12. 2012.
    52. Biological evaluation of medical devices – Part 12: Sample preparation and reference materials, International Organization for Standardization. Polski Komitet Normalizacyjny: 2007.
    53. Biological evaluation of medical devices- Part 11: Tests for systemic toxicity. ISO 10993-11. 2006.
    54. Shenton, M. J.; Lovell-Hoare, M. C.; Stevens, G. C., Adhesion enhancement of polymer surfaces by atmospheric plasma treatment. Journal of Physics D: Applied Physics 2001, 34 (18), 2754.
    55. Morent, R.; De Geyter, N.; Leys, C.; Gengembre, L.; Payen, E., Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surface and Coatings Technology 2007, 201 (18), 7847-7854.
    56. Ophthalmic optics -- Contact lenses and contact lens care products -- Determination of biocompatibility by ocular study with rabbit eyes ISO 9394:2012. 2012.
    57. Yin, S.; Wang, Y.; Ren, L.; Zhao, L.; Kuang, T.; Chen, H.; Qu, J., Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma. Applied Surface Science 2008, 255 (2), 483-485.
    58. Shin, Y. J.; Wang, Y.; Huang, H.; Kalon, G.; Wee, A. T. S.; Shen, Z.; Bhatia, C. S.; Yang, H., Surface-Energy Engineering of Graphene. Langmuir 2010, 26 (6), 3798-3802.
    59. Lehocký, M.; Drnovská, H.; Lapčı́ková, B.; Barros-Timmons, A. M.; Trindade, T.; Zembala, M.; Lapčı́k Jr, L. r., Plasma surface modification of polyethylene. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003, 222 (1–3), 125-131.
    60. Lin, M. E.; Fan, Z. F.; Ma, Z.; Allen, L. H.; Morkoç, H., Reactive ion etching of GaN using BCl3. Applied Physics Letters 1994, 64 (7), 887-888.
    61. Hillborg, H.; Sandelin, M.; Gedde, U. W., Hydrophobic recovery of polydimethylsiloxane after exposure to partial discharges as a function of crosslink density. Polymer 2001, 42 (17), 7349-7362.
    62. Krezović, B.; Dimitrijević, S.; Filipović, J.; Nikolić, R.; Tomić, S., Antimicrobial P(HEMA/IA)/PVP semi-interpenetrating network hydrogels. Polymer Bulletin 2013, 70 (3), 809-819.
    63. Figueiredo, A. G.; Figueiredo, A. R.; Alonso-Varona, A.; Fernandes, S. C.; Palomares, T.; Rubio-Azpeitia, E.; Barros-Timmons, A.; Silvestre, A. J.; Pascoal Neto, C.; Freire, C. S., Biocompatible bacterial cellulose-poly(2-hydroxyethyl methacrylate) nanocomposite films. Biomed Res Int 2013, 2013, 698141.
    64. Faccia, P. A.; Amalvy, J. I., Synthesis, characterization, and swelling behavior of new pH-sensitive hydrogels derived from copolymers of 2-hydroxyethyl methacrylate and 2-(diisopropylamino)ethylmethacrylate. Journal of Applied Polymer Science 2013, 127 (3), 1974-1980.
    65. d'Agostino, R.; Cramarossa, F.; Fracassi, F.; Illuzzi, F., 2 - Plasma Polymerization of Fluorocarbons. In Plasma Deposition, Treatment, and Etching of Polymers, Academic Press: San Diego, 1990, pp 95-162.
    66. Oyerinde, A.; Bello, E., Use of Fourier Transformation Infrared (FTIR) Spectroscopy for Analysis of Functional Groups in Peanut Oil Biodiesel and Its Blends. 2016; Vol. 13, p 1-14.
    67. Hua, F.; Swihart, M. T.; Ruckenstein, E., Efficient Surface Grafting of Luminescent Silicon Quantum Dots by Photoinitiated Hydrosilylation. Langmuir 2005, 21 (13), 6054-6062.
    68. Hua, F.; Erogbogbo, F.; Swihart, M. T.; Ruckenstein, E., Organically Capped Silicon Nanoparticles with Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation. Langmuir 2006, 22 (9), 4363-4370.
    69. Bodas, D.; Khan-Malek, C., Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectronic Engineering 2006, 83 (4–9), 1277-1279.
    70. Casserly, T. B.; Gleason, K. K., Effect of Substrate Temperature on the Plasma Polymerization of Poly(methyl methacrylate). Chemical Vapor Deposition 2006, 12 (1), 59-66.
    71. Holden, B. A.; Mertz, G. W., Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Investigative ophthalmology & visual science 1984, 25 (10), 1161-7.
    72. Daoud-Mahammed, S.; Couvreur, P.; Bouchemal, K.; Chéron, M.; Lebas, G.; Amiel, C.; Gref, R., Cyclodextrin and Polysaccharide-Based Nanogels: Entrapment of Two Hydrophobic Molecules, Benzophenone and Tamoxifen. Biomacromolecules 2009, 10 (3), 547-554.
    73. Shahbuddin, M.; Bullock, A. J.; MacNeil, S.; Rimmer, S., Glucomannan-poly(N-vinyl pyrrolidinone) bicomponent hydrogels for wound healing. Journal of Materials Chemistry B 2014, 2 (6), 727-738.
    74. Ulbricht, M.; Matuschewski, H.; Oechel, A.; Hicke, H.-G., Photo-induced graft polymerization surface modifications for the preparation of hydrophilic and low-proten-adsorbing ultrafiltration membranes. Journal of Membrane Science 1996, 115 (1), 31-47.
    75. Belfer, S.; Gilron, J.; Purinson, Y.; Fainshtain, R.; Daltrophe, N.; Priel, M.; Tenzer, B.; Toma, A., Effect of surface modification in preventing fouling of commercial SWRO membranes at the Eilat seawater desalination pilot plant. Desalination 2001, 139 (1–3), 169-176.
    76. Zhang, X.; Fu, C.; Feng, L.; Ji, Y.; Tao, L.; Huang, Q.; Li, S.; Wei, Y., PEGylation and polyPEGylation of nanodiamond. Polymer 2012, 53 (15), 3178-3184.
    77. Vu, T. N.; Laukens, K., Getting Your Peaks in Line: A Review of Alignment Methods for NMR Spectral Data. Metabolites 2013, 3 (2), 259-276.
    78. Chen, H.; Ma, W.; Xia, Y.; Gu, Y.; Cao, Z.; Liu, C.; Yang, H.; Tao, S.; Geng, H.; Tao, G.; Matsuyama, H., Improving amphiphilic polypropylenes by grafting poly(vinylpyrrolidone) and poly(ethylene glycol) methacrylate segments on a polypropylene microporous membrane. Applied Surface Science 2017, 419, 259-268.
    79. 陶國良; 魏良云; 夏艷平; 魏曉東, 兩親性PP-g-(NVP-co-PEGMA)抗污染改性劑的制備及改性聚丙烯親水微孔膜的表征. 高分子材料科學與工程 2016, 32 (3), 134-140.
    80. Banerjee, I.; Pangule, R. C.; Kane, R. S., Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials 2011, 23 (6), 690-718.
    81. Lundgren, B.; Ocklind, A.; Holst, A.; Harfstrand, A., Inflammatory response in the rabbit eye after intraocular implantation with poly(methyl methacrylate) and heparin surface modified intraocular lenses. J. Cataract Refract. Surg. 1992, 18 (1), 65-70.
    82. Amon, M.; Menapace, R.; Radax, U.; Freyler, H., In vivo study of cell reactions on poly(methyl methacrylate) intraocular lenses with different surface properties. J. Cataract Refract. Surg. 1996, 22 Suppl 1, 825-9.
    83. Joo, C.-K.; Park, J.; Seo, S.; Lee, J., The effect of hydrophilic treatment of PMMA using hydrolysis on cell attachment and light transmission in vitro. J Korean Ophthalmol Soc 1998, 39, 65-72.
    84. Park, J.; Joo, C.-K.; Seo, S.; Lee, J., The effect of hydrophilic treatment of PMMA material using hydrolysis on cell attachment in vivo (II). J Korean Ophthalmol Soc 1998, 39 (73-79).
    85. Kim, M. K.; Park, I. S.; Park, H. D.; Wee, W. R.; Lee, J. H.; Park, K. D.; Kim, S. H.; Kim, Y. H., Effect of poly(ethylene glycol) graft polymerization of poly(methyl methacrylate) on cell adhesion. In vitro and in vivo study. J. Cataract Refract. Surg. 2001, 27 (5), 766-74.
    86. Lee, J. H.; Kopecek, J.; Andrade, J. D., Protein-resistant surfaces prepared by PEO-containing block copolymer surfactants. J. Biomed. Mater. Res. 1989, 23 (3), 351-68.
    87. Goldberg, E. P.; Yahiaoui, A.; Mentak, K., Surface modified ocular implants, surgical instruments, devices, prostheses, contact lenses and the like. Google Patents: 1994.
    88. Tuzlakoglu, K.; Alves, C. M.; Mano, J. F.; Reis, R. L., Production and Characterization of Chitosan Fibers and 3-D Fiber Mesh Scaffolds for Tissue Engineering Applications. Macromol. Biosci. 2004, 4 (8), 811-819.
    89. Zhu, H.; Kumar, A.; Ozkan, J.; Bandara, R.; Ding, A.; Perera, I.; Steinberg, P.; Kumar, N.; Lao, W.; Griesser, S. S.; Britcher, L.; Griesser, H. J.; Willcox, M. D., Fimbrolide-coated antimicrobial lenses: their in vitro and in vivo effects. Optometry and vision science : official publication of the American Academy of Optometry 2008, 85 (5), 292-300.
    90. Northup, S. J., Safety Evaluation of Medical Devices: US Food and Drug Administration and International Standards Organization Guidelines. Int. J. Toxicol. 1999, 18 (4), 275-283.
    91. Jean-Baptiste, E.; Blanchemain, N.; Martel, B.; Neut, C.; Hildebrand, H. F.; Haulon, S., Safety, Healing, and Efficacy of Vascular Prostheses Coated with Hydroxypropyl-β-cyclodextrin Polymer: Experimental In Vitro and Animal Studies. Eur. J. Vasc. Endovasc. Surg. 2012, 43 (2), 188-197.
    92. DeSalva, S. J.; Kong, B. M.; Lin, Y. J., Triclosan: a safety profile. Am. J. Dent. 1989, 2 Spec No, 185-96.
    93. Barbolt, T. A., Chemistry and safety of triclosan, and its use as an antimicrobial coating on Coated VICRYL* Plus Antibacterial Suture (coated polyglactin 910 suture with triclosan). Surg. Infect. (Larchmt.) 2002, 3 Suppl 1, S45-53.
    94. Chen, S.; Chen, S.; Jiang, S.; Xiong, M.; Luo, J.; Tang, J.; Ge, Z., Environmentally Friendly Antibacterial Cotton Textiles Finished with Siloxane Sulfopropylbetaine. ACS applied materials & interfaces 2011, 3 (4), 1154-1162.
    95. He, L.; Li, S.; Chung, C. T. W.; Gao, C.; Xin, J. H., Constructing safe and durable antibacterial textile surfaces using a robust graft-to strategy via covalent bond formation. 2016, 6, 36327.
    96. Wang, J. J.; Liu, F., Imparting antifouling properties of silicone hydrogels by grafting poly(ethylene glycol) methyl ether acrylate initiated by UV light. Journal of Applied Polymer Science 2012, 125 (1), 548-554.
    97. Harvitt, D. M.; Bonanno, J. A., Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia. Optometry and vision science : official publication of the American Academy of Optometry 1999, 76 (10), 712-9.
    98. Nicolson, P. C.; Vogt, J., Soft contact lens polymers: an evolution. Biomaterials 2001, 22 (24), 3273-3283.
    99. Ophthalmic optics-Contact lenses-Part 4: Physicochemical properties of contact lens materials ISO 18369-4. 2017.
    100. Weissman, B. A.; Fatt, I., Cancellation of the boundary and edge effects by choice of lens thickness during oxygen permeability measurement of contact lenses. Optometry and vision science : official publication of the American Academy of Optometry 1989, 66 (5), 264-8.
    101. Rahmawan, Y.; Xu, L.; Yang, S., Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. Journal of Materials Chemistry A 2013, 1 (9), 2955-2969.
    102. Tasuku, O.; Bin, D.; Yuji, S.; Seimei, S., Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes. Nanotechnology 2007, 18 (16), 165607.
    103. Lee, E. J.; Jung, C. H.; Hwang, I. T.; Choi, J. H.; Cho, S. O.; Nho, Y. C., Surface morphology control of polymer films by electron irradiation and its application to superhydrophobic surfaces. ACS applied materials & interfaces 2011, 3 (8), 2988-93.
    104. Carbone, E. A. D.; Boucher, N.; Sferrazza, M.; Reniers, F., How to increase the hydrophobicity of PTFE surfaces using an r.f. atmospheric-pressure plasma torch. Surface and Interface Analysis 2010, 42 (6-7), 1014-1018.
    105. Marmur, A., Solid-Surface Characterization by Wetting. Annual Review of Materials Research 2009, 39 (1), 473-489.
    106. Hiratani, H.; Alvarez-Lorenzo, C., The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems. Biomaterials 2004, 25 (6), 1105-1113.
    107. Méijome, J. M. G. OBJECTIVE ANALYSIS OF PROPERTIES AND MATERIAL DEGRADATION IN CONTACT LENS POLYMERS USING DIFFERENT TECHNIQUES. University of Minho, Portugal, 2007.
    108. Hu, X.; Gong, X., A new route to fabricate biocompatible hydrogels with controlled drug delivery behavior. J. Colloid Interface Sci. 2016, 470, 62-70.
    109. Hu, X.; Tan, H.; Hao, L., Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy. Journal of the mechanical behavior of biomedical materials 2016, 64, 43-52.
    110. Chaouat, M.; Le Visage, C.; Baille, W. E.; Escoubet, B.; Chaubet, F.; Mateescu, M. A.; Letourneur, D., A Novel Cross-linked Poly(vinyl alcohol) (PVA) for Vascular Grafts. Advanced Functional Materials 2008, 18 (19), 2855-2861.
    111. Okada, T.; Ikada, Y., Modification of silicone surface by graft polymerization of acrylamide with corona discharge. Die Makromolekulare Chemie 1991, 192 (8), 1705-1713.
    112. Zhai, M.; Yoshii, F.; Kume, T.; Hashim, K., Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydrate Polymers 2002, 50 (3), 295-303.
    113. Onishi, Y.; Eshita, Y.; Mizuno, M., Dextran Graft Copolymers: Synthesis, Properties and Applications. In Polysaccharide Based Graft Copolymers, Kalia, S.; Sabaa, M. W., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2013, pp 205-269.
    114. Gachon, A. M.; Richard, J.; Dastugue, B., Human tears: normal protein pattern and individual protein determinations in adults. Curr. Eye Res. 1982, 2 (5), 301-8.
    115. Xin, Z.; Du, S.; Zhao, C.; Chen, H.; Sun, M.; Yan, S.; Luan, S.; Yin, J., Antibacterial performance of polypropylene nonwoven fabric wound dressing surfaces containing passive and active components. Applied Surface Science 2016, 365, 99-107.
    116. Liu, N.; Chen, X.-G.; Park, H.-J.; Liu, C.-G.; Liu, C.-S.; Meng, X.-H.; Yu, L.-J., Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers 2006, 64 (1), 60-65.
    117. Katritzky, A. R.; Mu, L.; Lobanov, V. S.; Karelson, M., Correlation of Boiling Points with Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple Inorganics. The Journal of Physical Chemistry 1996, 100 (24), 10400-10407.
    118. Nivasu, V. M.; Reddy, T. T.; Tammishetti, S., In situ polymerizable polyethyleneglycol containing polyesterpolyol acrylates for tissue sealant applications. Biomaterials 2004, 25 (16), 3283-3291.
    119. Merche, D.; Vandencasteele, N.; Reniers, F., Atmospheric plasmas for thin film deposition: A critical review. Thin Solid Films 2012, 520 (13), 4219-4236.
    120. Kotsis, K.; Staemmler, V., Ab initio calculations of the O1s XPS spectra of ZnO and Zn oxo compounds. Phys. Chem. Chem. Phys. 2006, 8 (13), 1490-1498.
    121. Brundle, C. R.; Carley, A. F., XPS and UPS studies of the adsorption of small molecules on polycrystalline Ni films. Faraday Discuss. Chem. Soc. 1975, 60 (0), 51-70.
    122. Bertóti, I., Characterization of nitride coatings by XPS. Surface and Coatings Technology 2002, 151, 194-203.
    123. Vasilev, K.; Britcher, L.; Casanal, A.; Griesser, H. J., Solvent-Induced Porosity in Ultrathin Amine Plasma Polymer Coatings. The Journal of Physical Chemistry B 2008, 112 (35), 10915-10921.
    124. Gengenbach, T. R.; Vasic, Z. R.; Li, S.; Chatelier, R. C.; Griesser, H. J., Contributions of restructuring and oxidation to the aging of the surface of plasma polymers containing heteroatoms. Plasmas and Polymers 1997, 2 (2), 91-114.
    125. Gengenbach, T. R.; Chatelier, R. C.; Griesser, H. J., Characterization of the Ageing of Plasma-deposited Polymer Films: Global Analysis of X-ray Photoelectron Spectroscopy Data. Surface and Interface Analysis 1996, 24 (4), 271-281.
    126. Gerenser, L. J.; Elman, J. F.; Mason, M. G.; Pochan, J. M., E.s.c.a. studies of corona-discharge-treated polyethylene surfaces by use of gas-phase derivatization. Polymer 1985, 26 (8), 1162-1166.
    127. Foerch, R.; Kill, G.; Walzak, M. J., Plasma surface modification of polyethylene: short-term vs. long-term plasma treatment. Journal of Adhesion Science and Technology 1993, 7 (10), 1077-1089.
    128. Strobel, M.; Dunatov, C.; Strobel, J. M.; Lyons, C. S.; Perron, S. J.; Morgen, M. C., Low-molecular-weight materials on corona-treated polypropylene. Journal of Adhesion Science and Technology 1989, 3 (1), 321-335.
    129. Riccardi, C.; Barni, R.; Selli, E.; Mazzone, G.; Massafra, M. R.; Marcandalli, B.; Poletti, G., Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment. Applied Surface Science 2003, 211 (1), 386-397.
    130. Ton-That, C.; Teare, D. O. H.; Campbell, P. A.; Bradley, R. H., Surface characterisation of ultraviolet-ozone treated PET using atomic force microscopy and X-ray photoelectron spectroscopy. Surface Science 1999, 433, 278-282.

    無法下載圖示 全文公開日期 2023/08/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE