簡易檢索 / 詳目顯示

研究生: 吳彥增
Yan-Zeng Wu
論文名稱: 以非福斯特元件實現微型化天線之研究
A Study of Miniaturized Antennas Using Non-Foster Elements
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 楊成發
none
廖文照
none
賴季暉
none
陳筱青
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 77
中文關鍵詞: 非福斯特元件浮動負阻抗轉換器單端負阻抗轉換器偶極天線倒F天線穩定性耦合效應
外文關鍵詞: Non-Foster elements, floating NIC, single-ended NIC, dipole antenna, IFA antenna, stability, mutual coupling.
相關次數: 點閱:435下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主旨,以實際應用為前提,研製兩款非福斯特元件整合於天線之微型化設計。該設計之基礎,乃因非福斯特電路具有負電抗特性,若作為匹配網路,將可打破以往傳統匹配網路所帶來的頻寬限制。此電路可以透過負阻抗轉換器與電抗負載元件來實現,整體來說,兩款天線設計再加入負阻抗轉換器作為匹配網路之後,皆具有尺寸縮小及頻寬增加之特點。
    本論文首先整理現今負阻抗轉換器該領域之已有理論,針對浮動、單端負阻抗轉換器進行詳細介紹。接著,分別對偶極天線與倒F 天線進行浮動負阻抗轉換器與單端負阻抗轉換器的匹配設計,經充分考量其穩定性、走線耦合等非理想效應,乃將電路與天線整合以完成最終設計。經實驗證實,兩款天線加入非福斯特匹配網路皆能有效改善小天線頻寬偏窄的問題,輻射場型也與模擬有相當程度的吻合。
    綜上所述,本論文藉由正確的設計流程,成功實現負阻抗轉換器之電路,也透過與天線整合設計,驗證了非福斯特電路確實有小型化且增加天線操作頻寬的效果,更證實了負阻抗轉換器在天線工程應用中的可行性和有效性。


    This study focuses on the development of two Non-Foster miniaturized antennas suitable for practical applications. Two non-Foster elements, implemented by negative impedance converters (NICs), were integrated with electrically small antennas to achieve size miniaturization and broadband operation simultaneously.
    Benefitting from the negative reactance characteristic non-Foster circuits demonstrate, the bandwidth limitation of traditional antenna matching networks can be alleviated.
    In this thesis, a design flow for integrating NICs with electrically small antennas is reviewed, investigated and summarized. The theoretical background of the floating and single-ended NICs is first presented. The floating and single-ended NICs are then integrated with a balanced dipole antenna and a single-ended IFA antenna, respectively, as non-Foster antennas. The stability test as well as mutual coupling effect is taken into account and the antennas are fabricated and tested. The experimental results show a significant improvement in the impedance bandwidth, and there is a good agreement between the simulated and measured radiation patterns.
    It confirms the feasibility and effectiveness of Non-Foster elements in antenna engineering applications.

    摘要................................................................................................................................ I Abstract ........................................................................................................................ III 誌謝.............................................................................................................................. IV 目錄.............................................................................................................................. VI 圖目錄....................................................................................................................... VIII 表目錄........................................................................................................................... X 第一章 緒論.................................................................................................................. 1 1.1 研究動機與目的............................................................................................. 1 1.2 文獻探討.......................................................................................................... 2 1.3 研究貢獻.......................................................................................................... 4 1.4 論文組織.......................................................................................................... 4 第二章 負阻抗轉換器.................................................................................................. 5 2.1 前言................................................................................................................. 5 2.2 負阻抗轉換器之架構..................................................................................... 6 2.2.1 浮動負阻抗轉換器............................................................................... 6 2.2.2 單端負阻抗轉換器............................................................................. 10 2.3 負阻抗轉換器整合於天線之原理............................................................... 12 2.4 結語............................................................................................................... 16 第三章 浮動負阻抗轉換器整合於偶極天線設計.................................................... 17 3.1 前言............................................................................................................... 17 3.2 浮動負阻抗轉換器整合於偶極天線設計................................................... 17 3.2.1 偶極天線設計..................................................................................... 17 3.2.2 以傳統匹配電路進行天線微型化..................................................... 21 VII 3.2.3 浮動負阻抗轉換器設計..................................................................... 25 3.2.4 以浮動負阻抗轉換器匹配電路進行天線微型化............................. 36 3.3 天線與電路整合實測................................................................................... 40 3.4 結語............................................................................................................... 44 第四章 單端負阻抗轉換器整合於IFA 天線設計 ................................................... 45 4.1 前言............................................................................................................... 45 4.2 單端負阻抗轉換器整合於IFA 天線設計 .................................................. 45 4.2.1 IFA 天線設計 ..................................................................................... 45 4.2.2 以傳統匹配電路進行天線微型化..................................................... 47 4.2.3 單端負阻抗轉換器設計..................................................................... 49 4.2.4 以單端負阻抗轉換器匹配電路進行天線微型化............................. 56 4.3 天線與電路整合實測................................................................................... 59 4.4 結語............................................................................................................... 66 第五章 結論................................................................................................................ 67 5.1 總結................................................................................................................ 67 5.2 未來發展........................................................................................................ 68 參考文獻...................................................................................................................... 69

    [1] F. Kuroki and H. Ohta, “Operational frequency tuning for meander-line antenna
    fed by coplanar waveguide with finite ground plane,” in IEEE Asia-Pacific Microw.
    Conf., Yokohama, Dec. 12-15, 2006, pp. 939-942.
    [2] O. Losito, V. Dimiccoli, and D. Barletta, “Meander-line inverted F antenna
    designed using a transmission line model,” in Proc. 8th Eur. Conf. Antennas and
    Propagation (EUCAP 2014), The Hague, Apr. 6-11, 2014, pp. 1370-1373.
    [3] J. Faerber and M. P. Y. Desmulliez, “Conformal meander shaped antenna for
    biotelemetry in endoscopic capsules,” Antennas and Propagation Conference,
    LAPC 2015. Loughborough, pp. 1-4, 2015.
    [4] M. S. Sharawi, Y. S. Faouri, and S. S. Iqbal, “Design of an electrically small
    meander antenna for LTE mobile terminals in the 800 MHz band,” GCC
    Conference and Exhibition (GCC), 2011 IEEE, pp. 213-216 , Feb. 2011.
    [5] R. M. Foster, “A Reactance Theorem,” Bell System Tech. J., vol. 3, pp. 259-267,
    Apr. 1924
    [6] J. G. Linvill, “Transistor negative-impedance converters,” Proc. IRE, vol. 41, no.
    6, pp. 725-729, Jun. 1953.
    [7] A. D. Harris and G. A. Myers, “An Investigation of Broadband Miniature
    Antennas,” Naval Postgraduate School. Monterey, CA, Sept. 1968.
    [8] S. E. Sussman-Fort and R. M. Rudish, “Non-Foster impedance matching for
    transmit applications,” in Proc. IEEE Int. Workshop Antenna Technol. Small
    Antennas Novel Metalmater., 2006, pp. 53–56.
    [9] S. E. Sussman-Fort and R. M. Rudish, “Non-Foster impedance matching of
    electrically-small antennas,” IEEE Trans. Antennas Propag., vol. 57, no. 8, pp.
    2230-2241, Aug. 2009.
    [10] T. Kaneko and Y. Horii, “Influence of transistor packages and circuit
    dimensions for accurate design of negative impedance converters,” in 2013
    Asia-Pacific Microw. Conf. Proceedings, Nov. 5-8, pp. 1194-1197.
    [11] W. Wang, J. Geng, R. Jin, and X. Liang, “Design of a 600 MHz non-foster
    dipole,” presented at the IWAT2014 Int. Antenna Technol. Workshop, Sydney,
    N.S.W., Australia, Mar. 2014.
    70
    [12] H. Mirzaei and G. V. Eleftheriades, “A resonant printed monopole antenna with
    an embedded non-Foster matching network,” IEEE Trans. Antennas Propag.,
    vol. 61, pp. 5363-5371, Nov. 2013.
    [13] N. Zhu and R. W. Ziolkowski, “Broad-bandwidth, electrically small antenna
    augmented with an internal non-foster element,” IEEE Antennas and Wireless
    Propagation Letters, vol. 11, pp. 1116-1120, 2012.
    [14] K. Jagodzinska, “On the extending bandwidth of electrically small antenna
    using negative impedance converter,” in Proc. 9th Eur. Conf. Antennas and
    Propagation (EUCAP 2015), Lisbon, May. 13-17, 2015, pp. 1-4.
    [15] M. M. Jacob, J. Long, and D. F. Sievenpiper, “Noise in non-foster antenna
    matching circuits,” in Proc. IEEE AP-S Int. Symp., Orlando, FL, USA, Jul. 2013,
    pp. 2205-2206.
    [16] H. Mirzaei and G. V. Eleftheriades, “A wideband metamaterial-inspired
    compact antenna using embedded non-Foster matching,” in Proc. IEEE
    Antennas Propag. Soc. Int. Symp., Jul. 2011, pp. 1950-1953.
    [17] N. Zhu and R. W. Ziolkowski, “Active metamaterial-inspired broad bandwidth,
    efficient, electrically small antennas,” IEEE Antennas Wireless Propag. Lett.,
    vol. 10, pp. 1582-1585, 2011.
    [18] M. M. Jacob, J. Long, and D. F. Sievenpiper, “Broadband non-foster matching
    of an electrically small loop antenna,” in Proc. IEEE Antennas and Propagation
    Society Int. Symp., 2012, pp. 1–2.
    [19] G. Mishra and S. K. Sharma, “Non-foster matching of electrically small bowtie
    antenna covering 600 MHz to 1100 MHz,” in IEEE International Symposium on
    Antennas and Propagation, Vancouver, BC, Canada, July 2015. Forthcoming.
    [20] M. Babuto, A. Monti, F. Bilotti, and A. Toscano, “Design of a non-foster
    actively loaded SRR and application in metamaterial-inspired components,”
    IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1219-1227, Mar. 2013.
    [21] S. D. Stearns, “Circuit stability theory for non-foster circuits,” in IEEE MTT-S
    Int. Microw. Symp. Dig., Seattle, WA, USA, Jun. 2-7, 2013, pp. 1-3.
    [22] M.-C. Tang, N. Zhu, and R. W. Ziolkowski, “Augmenting a modified Egyptian
    axe dipole antenna with non-foster elements to enlarge its directivity bandwidth,”
    IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 421-424, Apr. 2013.
    [23] Y. Shen and T.-H. Chio, “Matching electrically small antenna using non-foster
    71
    circuit in the FM-band,” in Proc. 8th Eur. Conf. Antennas and Propagation
    (EUCAP 2014), The Hague, Apr. 6-11, 2014, pp. 333-336.
    [24] H. Oraizi and S. H. Hashemi, “Design of a non-foster impedance matching
    network for electrically small antennas”, Proceedings of the 13th IEEE
    Mediterranean Microwave Symposium (MMS) 2013, Saida Lebanon, Sep. 2-5,
    2013, pp. 1-4.
    [25] J. M. C. Covington III, K. L. Smith, J. W. Shehan, V. S. Kshatri, T. P. Weldon,
    and R. S. Adams, “Measurement of a CMOS negative inductor for wideband
    non-foster metamaterials,” in Proc. IEEE SoutheastCon 2014, Lexington, KY,
    USA, March 13-16, 2014.
    [26] S. Saadat, H. Aghas, E. Afshari, and H. Mosallaei, “Low-power negative
    inductance integrated circuits for GHz applications,” IEEE Microwave and
    Wireless Components Letters, vol. 25, no. 2, pp. 118-120, Feb. 2015.
    [27] S. Koulouridis and J. L. Volakis, “Non-foster circuits for small broadband
    antennas,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Charleston, SC,
    USA, 2009, pp. 1-4.
    [28] G. Skahill, R. M. Rudish, and J. Piero, “Electrically small, efficient, wide-band,
    low-noise antenna elements,” Proc. Antenna Applications Symp., Allerton, IL,
    Sep. 1998, pp. 214-231.
    [29] J. T. Aberle and R. Loepsinger-Romak, Antennas with Non-Foster Matching
    Networks, ed. Constantine A. Balanis.
    [30] F.-F. Zhang, B.-H. Sun, K. He, P. Fei, and W.-J. Huang, “Study and design of a
    broadband monopole antenna using non-foster circuits,” in Proc. 9th
    International Symposium on Antennas Propagation and EM Theory (ISAPE
    2010), pp. 60-63, 2010.
    [31] S. D. Stearns, “Non-Foster circuits and stability theory,” in Proc. IEEE
    Antennas Propag. Soc. Int. Symp., Jul. 2011, pp. 1942-1945.
    [32] M. Daliri, M. Maymandi-Nejad, “Analytical model for CMOS cross-coupled
    LC-tank oscillator,” IET Circuit Devices Syst, vol. 8, no. 1, pp. 1-9, January
    2014.
    [33] A. Munir and J. Soba, “Multiband printed antenna composed of an array of split
    ring resonators,” in IEEE Europ. Micr. Conf. (EuMC), Paris, France, Sept. 2015,
    pp. 1407-1410.
    72
    [34] S. Verma and P. Kumar, “Compact arc-shaped antenna with binomial curved
    conductor-backed plane for multiband wireless applications,” IET Microwaves,
    Antennas & Propagation, vol. 9, no 4, pp. 351-359, 2015.
    [35] J. D. Kraus and R. J. Marhefka, Antennas for All Applications, 3rd ed.,
    Mcraw-Hill, New York, 2002.
    [36] Datasheet of RF Transformer TC2-72T+ [Online]. Available:
    https://www.minicircuits.com/pdfs/TC2-72T+.pdf
    [37] Datasheet of Renesa 2SC5007 [Online]. Available:
    http://documentation.renesas.com/doc/YOUSYS/document/P10386EJ2V0DS00
    .pdf

    QR CODE