簡易檢索 / 詳目顯示

研究生: 劉凡于
Fan-Yu Liu
論文名稱: 以自擴張環形熱壓轉印技術開發生物可降解支架
Utilizing Self-Expandable Circular Thermal Imprint to Fabricate Biodegradable Stents
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 楊申語
Sen-Yeu Yang
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 106
中文關鍵詞: 環形轉印生物可降解支架鎳鈦合金
外文關鍵詞: Circular imprint, Biodegradable stent, Nickel titanium alloy
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   聚乳酸(Polylactic acid,PLA)是目前被廣泛使用的生醫材料,其中包括手術縫線、心血管支架(stent)、組織工程支架(Scaffolds)、和藥物傳輸裝置等,在今日醫療技術有著重要的地位。PLA 更因其生物可降解特性及環保再生來源受到研究學者及產業界高度的關注。
      本研究以環形鎳鈦模具及環型熱壓轉印技術開發生物可降解支架,透過環型鎳鈦結構擴張模擬進行分析與實驗量測,與平面熱壓實驗進行參數歸納,找出最佳填充參數,進而判斷環形轉印之最佳轉印參數,再利用現有設備開發一特殊環形轉印系統及製造方法成功備製出可降解PLA 支架。
      本實驗更利用環型鎳鈦擴張技術與四片環型支架模具進行環形轉印實驗,並探討其成型特性。本研究利用環型鎳鈦擴張技術以環形熱壓方式成功成型出直徑6 mm、厚度0.45 mm 之心血管支架,由實驗結果得到在壓印時間20 分鐘、轉印溫度115°C 及轉印壓力0.1 MPa的製程條件下具有最佳的轉寫率。此環形轉印製程對於目前心血管和非心血管的生物可降解支架在製程及量產上,具有一定的貢獻及突破。


    Polylactide (PLA) is currently used in a number of biomedical tools, including sutures, stents, scaffolds, and drug delivery devices. PLA is a widely used polymer for biomedical devices which has received much attention for its biodegradability and origin in renewable resources.

    In this research, we present the fabrication of biodegradable stent by self-expandable circular thermal imprint technology. Firstly, a special designed self-expandable mold was applied to proceed the innovative process. Through the circular Nitinol mold expansion force measurement and flat thermal imprint experiments the operation parameters for fabricating PLA stent with self-expandable circular thermal imprint were found. Utilizing the expansion force of circular Nitinol mold, the designed strut patterns were transferred to a PLA tube and a PLA stent was produced by our circular thermal imprint process successfully.

    Secondly, the self-expandable mold was used as a self-expandable tool and a special designed circular mold were employed to fabricate PLA stents. The circular mold was assembled by several parts for the purpose of demolding easily. It makes draft angle from negative to positive when we carry out a circular imprint process. PLA stents were fabricated using the designed system and the experimental results indicate the special circular imprint process with duration 20 minutes, imprint temperature 115C and imprint pressure 0.1 MPa can achieve the best stent pattern transfer rate. The developed circular imprint system has successfully been used to fabricate PLA stents with dimensions of diameter 6 mm and thickness 0.45 mm. This study contributes to the fabrication and mass production of biodegradable vascular and non-vascular polymer stents.

    摘要 ............................................................................................................. i Abstract ...................................................................................................... ii 目錄 ........................................................................................................... iii 圖目錄 ...................................................................................................... vii 表目錄 ..................................................................................................... xiii 第一章 、緒論 ....................................................................................... 1 1-1 研究背景 ...................................................................................... 1 1-2 研究動機與目的 .......................................................................... 1 1-3 論文架構 ...................................................................................... 3 第二章、文獻回顧 .................................................................................... 4 2-1 聚乳酸高分子簡介 ....................................................................... 4 2-2 聚乳酸特性 .................................................................................. 4 2-2-1 光學活性 ............................................................................ 5 2-2-2 分子量 ................................................................................ 7 2-2-3 結晶性 ................................................................................ 7 2-2-4 機械性質 ............................................................................ 8 iv 2-2-5 生物可降解性質 ................................................................ 9 2-3 微/奈米轉印技術 ....................................................................... 10 2-4 血管支架(Stents)簡介 ................................................................ 13 2-4-1 可降解支架製備相關方法 .............................................. 14 2-4-2 PLA 組織工程支架製備相關方法 .................................. 19 2-5 鎳鈦合金材料介紹 .................................................................... 19 2-6 鎳鈦合金熱處理 ........................................................................ 23 第三章、研究方法 .................................................................................. 25 3-1 實驗原理 ..................................................................................... 25 3-1-1 模具材料選用 .................................................................. 25 3-1-2 鎳鈦模具之擴張製程 ...................................................... 26 3-2 實驗設備 ..................................................................................... 27 3-2-1 微/奈米轉印機台 ............................................................. 27 3-2-2 光纖雷射系統 .................................................................. 28 3-2-3 擴張設備 .......................................................................... 30 3-2-4 壓縮設備 .......................................................................... 32 3-2-5 熱風循環烘箱 (Cyclic Oven) ......................................... 34 3-3 量測儀器 ..................................................................................... 35 v 3-3-1 光學顯微鏡 (Optical Microscope, OM) ......................... 35 3-3-2 Z 軸量測平台................................................................. 36 3-3-3 熱示差掃瞄分析儀 (Differential Scanning Calorimeter) ..................................................................................................... 37 3-3-4 轉式動態流變儀(Modular Compact Rheometer) ....... 38 第四章、實驗規劃 .................................................................................. 40 4-1 材料及實驗製備 ........................................................................ 41 4-1-1 材料性質 .......................................................................... 41 4-1-2 黏度量測 .......................................................................... 43 4-1-3 PLA 管材製作 .................................................................. 44 4-2 環形熱壓轉印製程測試 ............................................................ 47 4-2-1 鎳鈦合金擴張力量測與模擬 ........................................... 48 4-2-2 鎳鈦模具平板熱壓轉印測試 .......................................... 51 4-3 環形熱壓轉印實驗 .................................................................... 55 4-3-1 環形熱壓轉印流程 ........................................................... 55 4-3-2 螺旋鎳鈦模具實驗 .......................................................... 57 4-3-3 環形鎳鈦支架實驗 .......................................................... 58 4-4 環形模具轉印製程實驗 ............................................................ 60 4-4-1 環形四片模具設計 .......................................................... 61 vi 第五章、實驗結果分析 .......................................................................... 63 5-1 鎳鈦合金擴張力量測與模擬分析 ............................................ 63 5-2 平板熱壓轉印結果與分析 ........................................................ 65 5-2-1 溫度測試結果 .................................................................. 65 5-2-2 轉印時間測試結果 .......................................................... 67 5-2-3 材料不同製程之測試結果 .............................................. 69 5-2-3 平板熱壓轉印測試結果與討論 ....................................... 71 5-3 環形熱壓轉印實驗結果與分析 ................................................ 72 5-3-1 向外轉印實驗結果 .......................................................... 72 5-3-2 向內轉印實驗結果 .......................................................... 74 5-3-3 螺旋模具轉印實驗結果 .................................................. 74 5-4 環形模具熱壓實驗結果與分析 ................................................ 76 5-4-1 環形模具轉印實驗結果 .................................................. 76 5-4-2 環形模具轉印實驗分析 .................................................. 78 第六章、結論與未來展望 ...................................................................... 82 6-1 結論 ..................................................................................... 82 6-2 未來展望 ............................................................................. 83 參考文獻 ................................................................................................... 84

    1 . 蔡璨鴻, “應用熱壓轉印技術於聚乳酸高分子微奈米結構製作之製程研究” , 國立台灣科技大學碩士論文, 2012。
    2. A. K. Schneider, "Polymers of high melting lactide", U.S. Patent, NO.2703316, 1955.
    3. O. Tatsuro, M. Tetsuji, O. Yuichi, "Synthesis of poly(L-lactide)-grafted pullulan through coupling reaction between amino group end-capped poly(L-lactide) and carboxymethyl pullulan and its aggregation behavior in water", Journal of Polymer Science, Part A, Vol.42, pp.5482-5487, 2004.
    4. H. S. Kim ,M. O. Hwang, M. N. Kim, J. S. Yoon, "Preparation of high-molecular-weight poly(L-lactic acid)-based polymers through direct condensation polymerization in bulk state", Journal of Applied Polymer Science, Part A, Vol.100, pp.466-472, 2006.
    5. N. A. Higgins, "Condensation polymers of hydroxyacetic acid", U.S.
    Patent, NO.2676945,1982.
    6. J. W. Leenslag, "Poly(L-lactide) and its biomedical applications", PhD. Thesis, University of Groningen, The Netherlands, 1982.
    7. H. J. Lehermeier., J. R. Dorgan, J. D. Way, "Gas permeation properties of poly(lactic acid)", Journal of Membrane Science, Vol.190 , pp.243-251, 2001.
    8. J. C. Bogaert, P. Coszach, "Poly(lactic acids): a potential solution to plastic waste dilemma", Macromolecular Symposia,Vol.153, pp.287-303, 2000.
    9. R. Jain, N. H. Shah, A. W. Malick, C. T. Rhodes, "Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches", Drug Development and Industrial Pharmacy, Vol.24, pp.703-727, 1998.
    10. D. Hutmacher, M. Hürzeler and H. Schliephake, "A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications", The International Journal of Oral & Maxillofacial Implants, Vol.11, pp.667-678, 1996.
    11. S. H. Hyon, K. Jamshidi and Y. Ikada, "Synthesis of polylactides with different molecular weights", Biomateriols, Vol.18, pp.1503-1508, 1997.
    12. K. Jamshidi, S. H. Hyon and Y. Ikada, “Thermal characterization of polylactides’’, Polymer,Vol.29, pp.2229-2234,1988.
    13. D. Cam, S. H. Hyon and Y. Ikada , "Degradation of high molecular weight poly(L-lactide) in alkaline medium", Biomaterials,Vol.16, pp.833-843, 1995.
    14. T. R. Tice and D. R. Cowsar, "Biodegradable controlled release parenteral systems", Pharmacol. Technol. J. , Vol.8,pp.26-31,1984.
    15. J. Rak, J. L. Ford and C. Rostron, V. Walters, "The preparation and characterization of poly(D,L-lactic acid) for use as a biodegradable drug carrier", Pharm. Acta Helv., Vol.60, pp.162-169, 1985.
    16. X. S. Wu, "Encyclopedic handbook biomaterials and bioengineering", Marcel Dekker, Inc, pp.5430-1200, 1995.
    17. H. Tsuji and Y. Ikada, "Properties and morphologies of poly(L-lactide):1.Annealing condition effects on properties and morphologies of poly(L-lactide)", Polymer, Vol. 36, pp. 2709-2716, 1995.
    18. H. Tsuji, A. Mizuno and Y. Ikada, "Properties and Morphology of Poly(L-lactide). III. Effects of Initial Crystallinity on Long-Term In Vitro Hydrolysis of High Molecular Weight Poly(L-lactide) Film in Phosphate-Buffered Solution", Journal of Applied Polymer Science, Vol.77, pp.1452-1464, 1999.
    19. H. Tsuji and Y. Ikada, "Properties and morphology of poly(l-lactide) effects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution", Polymer Degradation and Stability, Vol.67, pp.179-189, 2000.
    20. S. D. Park, M. Todo and K. Arakawa, "Effects of isothermal crystallization on fracture toughness and crack growth behavior of poly (lactic acid)", Journal of Materials Science,Vol.40, pp.1055-1058, 2005.
    21. 任杰,“可降解與吸收材料” ,化學工業出版社,2003。
    22. H. Tsuji and S. Miyauchi, "Poly(l-lactide): enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) films with different crystallinities and a fixed", Polymer,Vol.42, pp.4463-4467, 2001.
    23. S. Y. Chou, P. R. Krauss and P. J. Renstrom, "Nanoimprint lithography", Journal of Vacuum Science & Technology B, Vol.14, pp.4129–4133, 1997.
    24. M. Heckele, W. Bacher and K. D. Muller, "Hot embossing – The molding technique for plastic micro structures", Microsystem Technologies, Vol.4, pp.122-124, 1998.
    25. J. L. Charest, L. E. Bryant, A. J. Garcia and W. P. King, "Hot embossing for micropatterned cell substrates", Biomaterials,Vol.25, pp.4767-4775, 2004.
    26. Y. ITO, H. HASUDA, M. MORIMATSU , N. TAKAGI and Y. HIRAI, "A microfabrication method of a biodegradable polymer chip for a controlled release syste", J. Biomater. Sci. Polymer Edn, Vol. 16, No. 8, pp. 949–955,2005.
    27. C. A. Mills, M. Navarro, E. Enge, E. Martinez, M. P. Ginebra, J. Planell, A. Errachid and J. Samitier, "Transparent micro- and nanopatterned poly(lactic acid) for biomedical applications", Journal of Biomedical Materials Research Part A, Vol.76, pp.781-787, 2006.
    28. C. A. Mills, E. Martinez, F. Bessueille, G. Villanueva, J. Bausells, J.
    Samitier and A. Errachid, "Production of structures for microfluidics using polymer imprint techniques", Microelectronic Engineering, Vol.78-79, pp.695-700, 2005.
    29. Y. Hirai, M. Fujiwara , T. Okuno and Y. Tanaka, "Study of the resist
    deformation in Nanoimprint lithography", J.Vac., Sci. Technol. B, Vol.
    19,No.6, 2001.
    30. Y. Hirai, T. Konishi, T. Yoshikawa and S. Yoshida, "Simulation and experimental study of polymer deformation in nanoimprint lithography", J. Vac. Sci. Technol. B , Vol.22, No.6, pp.3289-3293, 2004 .
    31. W. B. Young, "Analysis of the Nanoimprint Lithography with a Viscous Model", Microelectronic Engineering, Vol. 77, 2005, pp.405-411.
    32. 林耘緯,“快速熱壓轉印製程模擬及實驗研究’’ ,國立台灣科技大學碩士論文,2012。
    33. J. K. Michael and W. S. Patrick, "Coronary Stenting-Current Perspectives A Companion to the Handbook of Coronary Stent", Martin Dunitz Ltd, London, 1990.
    34. N. Grabow, C. M. Bunger , K. Sternberg , S. Mews , K. Schmohl and K. P. Schmitz, "Mechanical Properties of a Biodegradable Balloon-expandable Stent From Poly(L-lactide) for Peripheral Vascular Applications", Journal of Medical Devices, Vol.1, pp.84-88, 2007.
    35. N. Grabow, M. schlum, K. sternberg, N. Hakansson, S. kramer and K.P. Schmitz, "Mechanical Properties of Laser Cut Poly(L-Lactide) Micro-Specimens: Implications for Stent Design, Manufacture, and Sterilization", Journal of Biomechanical Engineering, Vol.127, pp.25-31, 2005.
    36. Su SH, Chao RY, Landau CL, Nelson KD, Timmons RB, Meidell RS and Eberhart RC, "Expandable bioresorbable endovascular stent. I. Fabrication and properties", Annals of Biomedical Engineering, Vol.31, pp. 667-77, 2003.
    37. 姜富均, “生物可降解式心血管支架支研究與開發”,長庚大學碩士論文,2009。
    38. Subbu Venkatraman, Tan Lay Poh, Tjong Vinalia, Koon Hou Mak and Freddy Boeya, "Collapse pressures of biodegradable stents", Biomaterials, Vol.24, pp. 2105-2111, 2003.
    39. A. Lafont, S. Li, H. Garreau, F. Cornhill and M. Vert, "PLA Stereocopolymers as Sources of Bioresorbable Stents: Preliminary Investigation in Rabbit", 2006 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 77B: pp.349–356, 2006.
    40. M. C. Chen, H.W. Tsai, Y. Chang, W.Y. Lai, F.L. Mi., C.T. Liu, H.S. Wong and H.W. Sung, "Rapidly Self-Expandable Polymeric Stents with Shape-Memory Property", Biomacromolecules, Vol.8, pp.2774-2780, 2007.
    4 1 . 林孟頡,“以環形熱壓轉印技術開發生物可降解支架”,國立台灣科技大學碩士論文,2013。
    42. Xinghou Gong, Chak Yin Tang, Chi Tak Wong, William Weijia Lu, Yugang Zhang, Wing Moon Lam, Shuping Wu and Jianing Liu, "Fabrication of poly(lactic acid) scaffolds by a modified solvent casting/porogen leaching method", e-Polymers, no. 113, 2010.
    43. Xiaopeng Liu, Yinong Wang, Dazhi Yang and Min Qi, "The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent"Meterial Characterization,Vol.59,pp.402-406,2008.
    44. 張銘菘,“形狀記憶合金之有限元素分析”,國立雲林科技大學碩士論文,2008。
    45. D. vojtěch, "Influence of Heat Treatment of Shape Memory Niti Alloy on Its Mechanical Properties", Czech Academy of Science, 2010.
    46. K.W.K. Yeung, K.M.C. Cheung, W.W. Lua and C.Y. Chung, "Optimization of Thermal Treatment Parameters to Alter Austenitic Phase Transition Temperature of Niti Alloy for Medical Implant", Materials Science and Engineering A 383, pp213-218, 2004.

    無法下載圖示 全文公開日期 2020/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE