簡易檢索 / 詳目顯示

研究生: 楊珣
Xun Yang
論文名稱: REBOA球囊支架的設計與製作
Design and Fabrication of REBOA Balloon Stents
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 林原慶
Yuan-Ching Lin
鄭有森
Yu-Sen Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 166
中文關鍵詞: REBOA出血性休克支架球囊鎳鈦合金
外文關鍵詞: REBOA, hemorrhagic shock, stent, balloon, nitinol
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 急救性主動脈球囊阻斷術(Resuscitative Endovascular Balloon Occlusion of the Aorta, REBOA)是一種出血性休克的急救方式,當患者腹部或骨盆以下遭受重創並無法有效直接加壓止血時,可用REBOA進行胸主動脈或腹主動脈的暫時性止血,以避免患者因出血性休克而死亡。
    本研究開發出一款外徑為6Fr(2mm)之可縮放REBOA球囊支架,並利用有限元素模型,進行模擬及改善設計,目標解決目前市售REBOA導管(catheter)直徑較大(於患者股動脈易產生干涉問題)、須以X光輔助置放及觀測其擴張情形、以及治療中縮放球囊(balloon)讓血液通過時易產生位移等問題。本研究先製作與設計之球囊支架尺寸及特徵相同的不鏽鋼與鎳鈦支架試片,分別進行擴張量、壓縮力、與徑向力之量測,並與理論模擬結果進行比較及分析,結果顯示所建立的有限元素模型,套用不鏽鋼與鎳鈦材料參數,均能成功預測支架試片的應力應變情形。
    為了找出最適合的球囊支架設計,本研究針對三種使用情境組合(支架、球囊和有無使用液體輔助擴張),利用有限元素模型分析其作用時與血管的接觸狀況,探討是否能達到球囊支架置入後阻擋血流的目的,且針對設計參數進行支架應變量的優化,以決定最終球囊支架原型設計。本研究並探討不同熱處理的時間與溫度對鎳鈦支架形狀記憶及機械特性的影響,並決定以熱處理溫度310C及時間1分鐘為球囊支架原型的熱處理參數。本研究最後以雷射加工、喷砂、酸洗、電解拋光、及熱處理製程,完成所設計的REBOA球囊支架原型,並進行測試及分析。


    Resuscitative endovascular balloon occlusion of aorta (REBOA) is a first-aid treatment of hemorrhagic shock. While patient’s abdomen or pelvis was under severe trauma and non-compressible hemorrhage, REBOA could be applied for temporary occlusion in aorta in order to prevent patient from death due to hemorrhagic shock.
    In this study an innovative REBOA balloon stent, retrievable and with 6 Fr diameter, was designed and improved by using finite element simulation and analysis. The goal of this design is to deal with the problems which appear on the current REBOA catheters. For example, the diameter is too large and may cause interference in femoral aorta, an X-ray system has to be used to assist monitoring the position and inflation of balloon, temporarily deflating the balloon to let the blood pass could result in the migration of balloon, and so on.
    For experimental study, stainless and nitinol stent samples, which had similar features and dimensions with designed stent, were made to proceed the measurement of expanded diameter, axial and radial force, and the measured result was compared with the theoretical work. The result showed that the built theoretical model in this study can predict the stress-strain behavior of the samples successfully.
    In order to find the best design of REBOA balloon stent, three types of combination (stent, balloon, with or without saline assistance) were conducted to simulate the contact situation with aorta and investigate if they could achieve the goal of occlusion. Also, the optimization of design parameters were conducted to determine the final design of balloon stent prototype. This study also investigated the effect of different heat treatment time and temperature on the shape memory function and mechanical properties of nitinol stents, and finally it was decided to use 300˚C with 1 minute as the parameters of heat treatment for the final prototype. After processing with laser cutting, sand blasting, acid pickling, electro-polishing and heat treatment, the final REBOA balloon stent prototype was fabricated, then tested to verify if it can meet the goal of this study.

    目錄 摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章、 緒論 1 1.1. 研究背景 1 1.2. 研究動機 2 1.3. 研究目的 3 第二章、 文獻回顧 4 2.1. 急救性主動脈球囊阻斷術(REBOA)介紹 4 2.2. 市售REBOA Catheter介紹 10 2.3. 記憶合金 - 鎳鈦合金的材料機械性質 14 2.4. 鎳鈦合金熱處理參數 19 第三章、 實驗方法 22 3.1. REBOA支架設計 25 3.1.1. 支架設計概念 25 3.1.2. 定義設計參數 26 3.2. 有限元素模擬 28 3.2.1. 有限元素模型建立 28 3.2.2. 血管與球囊設定 29 3.2.3. 材料性質設定 32 3.2.4. 邊界條件設定 38 3.2.5. 網格大小與收斂性分析 43 3.3. 實驗驗證 47 3.3.1. 有限元素模型驗證之量測方式 47 3.3.2. 不鏽鋼支架 50 3.3.3. 鎳鈦支架 51 3.4. 光纖雷射加工系統 53 3.4.1. 光纖雷射系統 53 3.4.2. 光纖雷射實驗規劃 56 3.4.3. 雷射加工路徑規畫 58 3.5. 後處理製程 59 3.5.1. 噴砂 60 3.5.2. 酸洗 60 3.5.3. 電解拋光 61 3.6. 鎳鈦支架預擴張製程 63 3.6.1. 鎳鈦支架預擴張預擴張流程 63 3.6.2. 擴張設備 65 3.7. 血壓模擬系統 68 3.8. 實驗設備與儀器 69 3.8.1. 超音波震盪機 69 3.8.2. 3D列印機 70 3.8.3. 噴砂機 70 3.8.4. 光學顯微鏡 71 第四章、 實驗結果與討論 73 4.1. 不鏽鋼支架之有限元素模型驗證 73 4.1.1. 擴張量 74 4.1.2. 徑向力 79 4.1.3. 壓縮力 87 4.2. 鎳鈦REBOA球囊支架有限元素模擬 92 4.2.1. 球囊、支架與液體之組合模擬分析 92 (A) Type-1支架-球囊-血管(無液體輔助) 94 (B) Type-2支架-球囊-血管(有液體輔助) 95 (C) Type-3球囊-支架-血管(有液體輔助) 97 4.2.2. REBOA支架設計與模擬 101 4.3. 鎳鈦支架之實驗驗證 117 4.3.1. 熱處理實驗 118 4.3.2. 鎳鈦支架之有限元素模型驗證 119 4.4. 支架加工 125 4.4.1. 支架切割路徑規劃 125 4.4.2. 支架餘料加工路徑 130 4.4.3. 支架熔渣處理 132 4.5. 鎳鈦支架後處理製程 134 4.5.1. 噴砂 135 4.5.2. 酸洗 136 4.5.3. 電解拋光 137 4.6. 鎳鈦支架預擴張製程 140 4.7. 血壓模擬測試 142 第五章、 結論與未來展望 144 5.1. 結論 144 5.2. 未來展望 146 參考文獻 147

    [1] R. JÚNIOR et al., "Resuscitative endovascular balloon occlusion of the aorta (REBOA): an updated review," Revista do Colégio Brasileiro de Cirurgiões, vol. 45, no. 1, 2018.
    [2] Z. Qasim, M. Brenner, J. Menaker, and T. Scalea, "Resuscitative endovascular balloon occlusion of the aorta," Resuscitation, vol. 96, pp. 275-279, 2015.
    [3] J. Morrison et al., "Resuscitative endovascular balloon occlusion of the aorta (REBOA)," Top Stent–the Art of Endovascular Hybrid Trauma and Bleeding Management. Sweden: Örebro University Hospital, pp. 77-98,2017.
    [4] A. Stannard, J. L. Eliason, and T. E. Rasmussen, "Resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct for hemorrhagic shock," Journal of Trauma and Acute Care Surgery, vol. 71, no. 6, pp. 1869-1872, 2011.
    [5] W. L. Biffl, C. J. Fox, and E. E. Moore, "The role of REBOA in the control of exsanguinating torso hemorrhage," Journal of Trauma and Acute Care Surgery, vol. 78, no. 5, pp. 1054-1058, 2015.
    [6] A. Stannard, J. J. Morrison, D. J. Sharon, J. L. Eliason, and T. E. Rasmussen, "Morphometric analysis of torso arterial anatomy with implications for resuscitative aortic occlusion," Journal of Trauma and Acute Care Surgery, vol. 75, no. 2, pp. S169-S172, 2013.
    [7] T. Martinelli et al., "Intra-aortic balloon occlusion to salvage patients with life-threatening hemorrhagic shocks from pelvic fractures," Journal of Trauma and Acute Care Surgery, vol. 68, no. 4, pp. 942-948, 2010.
    [8] N. Katz, " REBOA: RESUSCITATIVE ENDOVASCULAR BALLOON OCCLUSION OF THE AORTA,"2017, from: https://emottawablog.com/2017/02/reboa-resuscitative-endovascular-balloon-occlusion-of-the-aorta/
    [9] I. Pryor Medical Devices, "ER-REBOA™ Catheter Instructions for Use," 2015, from: http://prytimemedical.com/wp-content/uploads/2016/07/7001-01-Rev-A_Pryor-ER-REBOA-Instructions-for-Use.pdf
    [10] M. plc, "Reliant™ Stent Graft Balloon Catheter Instructions for Use," 2015, from: http://manuals.medtronic.com/content/dam/emanuals/cardio/CONTRIB_223998.pdf
    [11] D. E. Hodgson, W. Ming, and R. J. Biermann, "Shape memory alloys," ASM International, Metals Handbook, Tenth Edition., vol. 2, pp. 897-902, 1990.
    [12] A. R. Pelton, J. Dicello, and S. Miyazaki, "Optimisation of processing and properties of medical grade Nitinol wire," Minimally Invasive Therapy & Allied Technologies, vol. 9, no. 2, pp. 107-118, 2000.
    [13] K. Otsuka and T. Kakeshita, "Science and technology of shape-memory alloys: new developments," MRS Bulletin, vol. 27, no. 2, pp. 91-100, 2002.
    [14] D. VOJTĚCH, "Influence of heat treatment of shape memory NiTi alloy on its mechanical properties," in International Conference Metals, pp. 18-20, 2010.
    [15] G. Langewouters, K. Wesseling, and W. Goedhard, "The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model," Journal of biomechanics, vol. 17, no. 6, pp. 425-435, 1984.
    [16] M. Vaghani, S. Vasanwala, and A. Desai, "Stainless Steel as a Structural Material: State of Review," International Journal of Engineering Research and Applications, vol. 4, pp. 657-662, 2014.
    [17] D.Kapper, "An Overview of Nitinol: Superelastic and Shape Memory," 2015, from: https://www.medicaldesignbriefs.com/component/content/article/mdb/tech-briefs/23077
    [18] J. Matthey, "Nitinol specification guidelines," 2019, from: https://matthey.com/markets/pharmaceutical-and-medical/medical-device-components/resource-library/nitinol-specification-guidelines
    [19] P. Prendergast et al., "Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling," Journal of biomechanical engineering, vol. 125, no. 5, pp. 692-699, 2003.
    [20] N. Hasirci and E. A. Aksoy, "Synthesis and modifications of polyurethanes for biomedical purposes," High Performance Polymers, vol. 19, no. 5-6, pp. 621-637, 2007.
    [21] 鄭博謙, "膽管支架擴張製程與可取回設計," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2015.
    [22] 陳正宗, "膽管支架之設計與光纖雷射加工," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2013.
    [23] S. Nagaoka and R. Akashi, "Low-friction hydrophilic surface for medical devices," Biomaterials, vol. 11, no. 6, pp. 419-424, 1990.
    [24] S. Zhao, L. Gu, and S. R. Froemming, "Finite element analysis of the implantation of a self-expanding stent: impact of lesion calcification," Journal of Medical Devices, vol. 6, no. 2, p. 021001, 2012.
    [25] H. Misawa and S. Juodkazis, 3D laser microfabrication: principles and applications. John Wiley & Sons, 2006.
    [26] 曾暐凱, "生醫支架雷射加工後處理製程改良," 碩士, 機械工程系, 國立台灣科技大學, 2017.

    無法下載圖示 全文公開日期 2024/08/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE