簡易檢索 / 詳目顯示

研究生: 黃筱翔
Hsiao-Hsiang Huang
論文名稱: 金屬玻璃薄膜鍍覆微型鑽針:鍍膜參數對鑽孔效果之影響
Thin Film Metallic Glasses-coated Micro-drill bits: Effects of Deposition Parameters on Drilling Performances
指導教授: 朱瑾
Jinn P. Chu
口試委員: 朱瑾
Jinn P. Chu
修芳仲
Fang-Jung Shiou
黃俐恬
Li-Tian Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 189
中文關鍵詞: 微鑽針金屬玻璃鍍層孔位精度鑽針壽命排屑能力
外文關鍵詞: Micro-drill bit, Thin film metallic glass, Hole accuracy, Durability, Chip removal
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

印刷電路板為電子業中不可或缺之部件,隨著機械加工技術朝向高精密與高速化方向發展,電路板微細加工之要求便愈趨嚴苛,使得鑽孔作業所使用之鑽針尺寸也越來越小。與一般尺寸鑽針相比,微鑽針承受相對嚴重的磨耗,進而導致斷針。為了使微鑽針達到良好的鑽孔條件與使用壽命,表面改質之鍍膜技術便發展在微鑽針上。
披覆在微鑽針上的鍍膜需要具備磨潤性,以減少加工過程中鑽針與工件之摩擦,並促進鑽針的排屑性能,進而提升鑽針之壽命與鑽孔品質。金屬玻璃鍍膜因其非晶結構,具備許多獨特之機械性質,例如:表面平整度佳、低摩擦係數與良好之磨潤性。故本研究將金屬玻璃鍍層鍍製在微鑽針上,期待能夠提升微鑽針之鑽孔性能。
本研究選用鋯基金屬玻璃鍍層鍍製薄膜於微鑽針上。微鑽針樣品於鍍膜前分別以兩種不同清洗方式(A組與B組)進行前處裡,接著以不同參數鍍覆含鈦緩衝層之金屬玻璃鍍膜與單層金屬玻璃鍍膜。鈦緩衝層是以電弧離子鍍的方式沉積,而金屬玻璃則是利用濺鍍方式沉積薄膜。含鈦緩衝層之金屬玻璃鍍膜微鑽針主要探討四種參數影響,包含表面清潔的時間、基材偏壓、電弧沉積時間與電弧能量;金屬玻璃薄膜鍍覆之微鑽針則探討工作壓力與基材偏壓對薄膜與微鑽針鑽孔能力之影響。完成鍍膜後之微鑽針會以固定轉速與進給率於兩種電路板上進行鑽孔測試。研究結果顯示,以A組清洗的微鑽針具有較佳之鑽孔能力,此結果可能是因微鑽針質量差異或清洗流程而造成,另外,不同板材條件會影響到鑽針鑽孔效果。在含鈦緩衝層之金屬玻璃鍍膜微鑽針的實驗結果中發現,表面清潔的時間越長會導致過度的離子轟擊,這將使鑽針針身受損,進而導致較差的鑽孔壽命;而在高基材偏壓下沉積的薄膜會有相對較少與較小的金屬微滴,這樣的薄膜會具備較低的表面粗糙度,進而提升鑽針的鑽孔能力。另一方面,在金屬玻璃薄膜鍍覆之微鑽針的實驗結果發現,在工作壓力5與8 mTorr下所製備的金屬玻璃鍍層之微鑽針展現相對佳之孔位精度與壽命。金屬玻璃鍍膜微鑽針與裸針相比,金屬玻璃鍍膜針最大可提升18.3%之孔位精度。研究更發現,鍍膜微鑽針在鑽孔過後針體表面粗糙度較低,表面粗糙度與鑽孔前相比,在退屑槽的位置僅有19.7%的變化量,而裸針在該位置之表面粗糙度變化量則為111.2%。因此,藉由以上的實驗結果推論,金屬玻璃鍍膜在適當的鍍膜參數下鍍製於微鑽針上,可以提供較平滑的表面,進而提升微鑽針之排屑能力與其他鑽孔性能。


The demand for better tool performance in machining printed circuit boards (PCBs) is increasing due to the extensive usage of PCBs in digital electronic products. Therefore, higher density PCBs with smaller hole diameters, produced by small sized drill bits are required. However, the chip adhesion became more serious for drill bits with small diameters e.g. micro-drill bit, leading to a poor drilling performance as well as short drill life.
To improve the drilling performance of micro-drill bits, surface modification, such as coating, have been widely applied. Thin film metallic glasses (TFMGs) have a smooth surface roughness and a low coefficient of friction compared with other coatings due to their disordered atomic structure. Accordingly, TFMGs have become a potential material for the surface treatment for micro-drill bits. In this study, micro-drill bits were pre-cleaned in two different ways, referred to as Group A and Group B. TFMG with Ti buffer layer (TFMG/Ti) and monolithic TFMG coatings were deposited by various deposition parameters using arc ion plating (Ti layer) and magnetron sputtering (TFMG). Effects of four parameters on drilling performance, including sputter etching time, substrate bias, arc deposition time and arc power were evaluated by TFMG/Ti coated drill bits. Moreover, the effects of working pressures and substrate biases were carried out by TFMG-coated drill bits. Drilling test were then evaluated on two kinds of PCBs, different PCBs yielded different drilling performances. For TFMG/Ti coated drill bits, long sputter etching time resulted in damage of drill substrate, due to the severe ion bombardment. Increasing substrate bias resulted in decreases of number and size of microparticles, thus the surface roughness decreased as well. For TFMG-coated drills, the pre-cleaning process was significantly influence on drilling performance. Overall, TFMG-coated drill bits in Group A presented a better drilling performance than those in Group B. TFMG-coated drill bits deposited at high working pressures (5 and 8 mTorr) exhibited better drilling performance. The coated drill bits gave an average enhancement of Cpk up to 18.3% and lower surface roughness variation before and after drilling rest (19.7% presented by coated drills while 111.2% presented by bare drill bits at flutes), compared with bare drill bits. Furthermore, TFMG remained on the flute of coated micro-drill bits, providing a better chip removal.

Contents 摘要 I ABSTRACT III ACKNOWLEDGEMENTS V CONTENTS VIII LIST OF FIGURES XII LIST OF TABLES XVII CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND OF THE STUDY 1 1.2 MOTIVATION AND OBJECTIVES 2 CHAPTER 2 LITERATURE REVIEW 3 2.1 MICRO-DRILL BITS USED IN PCB MANUFACTURING 3 2.1.1 Micro-drill bits: Materials and geometry 3 2.1.2 Printed circuit board 4 2.2 MECHANISM AND EVALUATION OF DRILL BITS 5 2.2.1 Wear 6 2.2.2 Chip adhesion 7 2.2.3 Durability 9 2.2.4 Hole position accuracy 10 2.3 LUBRICANT COATINGS ON DRILL BITS 13 2.4 BUFFER LAYER USED ON DRILL BITS 16 2.5 THIN FILM METALLIC GLASSES 17 2.5.1 Properties and fabrication of TFMGs 17 2.5.2 Applications of TFMGs 20 2.5.3 Surface roughness of TFMGs 22 2.6 MAGNETRON SPUTTER DEPOSITION 23 2.7 CATHODIC ARC PLASMA DEPOSITION 25 2.7.1 MACROPARTICLES (OR MICROPARTICLES) 26 CHAPTER 3 EXPERIMENTAL PROCEDURES 30 3.1 SAMPLE PREPARATION 31 3.1.1 Substrate preparation 31 3.1.2 Substrate pretreatment 31 3.2 THIN FILM DEPOSITION 34 3.2.1 TFMG/Ti and TFMG deposition 34 3.2.2 Deposition parameters of TFMG/Ti 35 3.2.2.1 Deposition parameters of TFMG/Ti-PCB 1 35 3.2.2.2 Deposition parameters of TFMG/Ti-PCB 2 37 3.2.3 Deposition parameters of TFMG 37 3.3 MATERIAL CHARACTERIZATION 39 3.3.1 Chemical composition analysis 39 3.3.2 Crystallographic analysis 39 3.3.3 Thermal analysis 40 3.3.4 Microstructural analysis 41 3.4 DRILLING PERFORMANCE EVALUATIONS 41 3.4.1 Drilling condition 42 3.4.2 Hole position accuracy analysis 45 3.4.3 Durability analysis 47 3.4.4 Chip removal test 47 3.5 SURFACE MORPHOLOGY OBSERVATION 48 3.6 SURFACE ROUGHNESS ANALYSIS 48 3.7 CHEMICAL COMPOSITION ANALYSIS OF THE DRILL BITS AFTER DRILLING 50 CHAPTER 4 RESULTS AND DISCUSSION 51 4.1 MATERIAL CHARACTERIZATIONS 51 4.1.1 Chemical composition Analysis 51 4.1.2 Crystallographic analysis 53 4.1.3 Thermal analysis 53 4.1.4 Microstructural analysis 54 4.2 GROUP A: TFMG/TI COATEDDRILL BITS 56 4.2.1 Group A: TFMG/Ti coated drill bits-PCB 1 56 4.2.1.1 Effects of sputter etching time 56 4.2.1.1.1 Drilling performance evaluations 57 4.2.1.1.1.1 Hole position accuracy analysis 57 4.2.1.1.1.2 Chip removal test 57 4.2.1.1.2 Surface morphology observation 58 4.2.1.1.3 Surface roughness analysis 60 4.2.1.2 Effects of substrate bias 63 4.2.1.2.1 Drilling performance evaluations 63 4.2.1.2.2.1 Hole position accuracy analysis 63 4.2.1.2.2.2 Chip removal test 63 4.2.1.2.2 Surface morphology observation 64 4.2.1.2.3 Surface roughness analysis 66 4.2.1.3 Effects of arc deposition time 67 4.2.1.3.1 Drilling performance evaluations 67 4.2.1.3.1.1 Hole position accuracy analysis 67 4.2.1.3.1.2 Chip removal test 68 4.2.1.3.2 Surface morphology observation 68 4.2.1.3.3 Surface roughness analysis 70 4.2.1.4 Effects of arc power 71 4.2.1.4.1 Drilling performance evaluations 71 4.2.1.4.1.1 Hole position accuracy analysis 71 4.2.1.4.1.2 Chip removal test 72 4.2.1.4.2 Surface morphology observation 73 4.2.1.4.3 Surface roughness analysis 75 4.2.1.2 Discussion on TFMG/Ti coated drill bits-PCB 1 76 4.2.2 GROUP A: TFMG/TI COATED DRILL BITS-PCB 2 77 4.2.2.1 Effects of arc deposition time 77 4.2.2.1.1 Drilling performance evaluations 77 4.2.2.1.1.1 Hole position accuracy analysis 77 4.2.2.1.1.2 Chip removal test 78 4.2.2.1.2 Surface morphology observation 78 4.2.2.1.3 Surface roughness analysis 80 4.3 GROUP A: TFMG-COATED DRILL BITS (EFFECTS OF WORKING PRESSURE AND SUBSTRATE BIAS) 81 4.3.1 Drilling performance evaluations 81 4.3.1.1 Hole position accuracy analysis 81 4.3.1.2 Durability analysis 84 4.3.1.3 Chip removal test 85 4.3.2 Surface morphology observation 87 4.3.3 Surface roughness analysis 106 4.3.4 Chemical composition analysis of the coated drill bits after drilling 109 4.3.4.1 Mapping and the microstructure analysis of the coated drill bits after drilling 114 4.3.5 Discussion on Group A TFMG-coated drill bits 118 4.4 GROUP B: TFMG-COATED DRILL BITS (EFFECTS OF WORKING PRESSURE AND SUBSTRATE BIAS) 121 4.4.1 Drilling performance evaluations 121 4.4.1.1 Hole position accuracy analysis 121 4.4.1.2 Durability analysis 123 4.4.1.3 Chip removal test 124 4.4.2 Surface morphology observation 126 4.4.3 Surface roughness analysis 141 4.4.4 Chemical composition analysis of the coated drill bits after drilling 145 4.4.5 Discussion on Group B TFMG-coated drill bits 148 4.5 COMPARISON OF TFMG-COATED DRILLS IN GROUP A AND GROUP B 150 4.5.1 DIFFERENCE IN CLEANING PROCESS BETWEEN GROUP A AND GROUP B 152 CHAPTER 5 CONCLUSIONS 155 REFERENCES 157

[1] Shi H, Li H. Challenges and developments of micro drill bit for printed circuit board: a review. Circuit World 2013;39:75-81.
[2] Zheng L, Wang CY, Song YX, Yang L, Qu Y, Ma P, et al. A review on drilling printed circuit boards. Advanced Materials Research: Trans Tech Publ; 2011. p. 441-9.
[3] Hinds B, Treanor M. Drilling of printed circuit boards: factors limiting the use of smaller drill sizes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2000;214:35-45.
[4] Fu L, Guo Q. Development of an ultra-small micro drill bit for packaging substrates. Circuit World 2010;36:23-7.
[5] Rebhan U, Endert, H and Zall, G. Micromanufacturing benefits from excimer-laser developments. Lasers Focus World 1994:91-6.
[6] Chinnock C. Laser-drilled vias could make multichip modules cheap. Microelectronics Mfg 1995;31:30-1.
[7] Kane VE. Process capability indices. Journal of quality technology 1986;18:41-52.
[8] Chu JP, Jang J, Huang J, Chou H, Yang Y, Ye J, et al. Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films 2012;520:5097-122.
[9] Chiang C, Chu J, Liu F, Liaw P, Buchanan R. A 200 nm thick glass-forming metallic film for fatigue-property enhancements. Applied physics letters 2006;88:131902.
[10] Chu J-H, Lee J, Chang C-C, Chan Y-C, Liou M-L, Lee J-W, et al. Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass. Surface and Coatings Technology 2014;259:87-93.
[11] Tsai P, Li J, Chang Y, Lin H, Jang J, Chu J, et al. Fatigue properties improvement of high-strength aluminum alloy by using a ZrCu-based metallic glass thin film coating. Thin Solid Films 2014;561:28-32.
[12] Jia H, Liu F, An Z, Li W, Wang G, Chu JP, et al. Thin-film metallic glasses for substrate fatigue-property improvements. Thin Solid Films 2014;561:2-27.
[13] Chu JP, Yu C-C, Tanatsugu Y, Yasuzawa M, Shen Y-L. Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Scientific reports 2016;6.
[14] Chu JP, Liu T-Y, Li C-L, Wang C-H, Jang JS, Chen M-J, et al. Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application. Thin Solid Films 2014;561:102-7.
[15] Abrao A, Faria P, Rubio JC, Reis P, Davim JP. Drilling of fiber reinforced plastics: A review. Journal of Materials Processing Technology 2007;186:1-7.
[16] Liu K, Li X, Rahman M. Characteristics of high speed micro-cutting of tungsten carbide. Journal of Materials Processing Technology 2003;140:352-7.
[17] Han D, Mecholsky J. Fracture analysis of cobalt-bonded tungsten carbide composites. Journal of materials science 1990;25:4949-56.
[18] Fu L, Qu J, Chen H. Mechanical drilling of printed circuit boards: the state-of-the-art. Circuit World 2007;33:3-8.
[19] Su J, Huang C, Tarng Y. An automated flank wear measurement of microdrills using machine vision. Journal of Materials Processing Technology 2006;180:328-35.
[20] Li J, Shrivastava P, Gao Z, Zhang H-C. Printed circuit board recycling: a state-of-the-art survey. IEEE transactions on electronics packaging manufacturing 2004;27:33-42.
[21] Ehrler S. Properties of new printed circuit board base materials. Circuit World 2002;28:38-45.
[22] Zheng L, Wang C, Yang L, Song Y, Fu L. Characteristics of chip formation in the micro-drilling of multi-material sheets. International Journal of Machine Tools and Manufacture 2012;52:40-9.
[23] Malhotra S. Some studies on drilling of fibrous composites. Journal of Materials Processing Technology 1990;24:291-300.
[24] Lin S, Chen I. Drilling carbon fiber-reinforced composite material at high speed. Wear 1996;194:156-62.
[25] Velayudham A, Krishnamurthy R, Soundarapandian T. Evaluation of drilling characteristics of high volume fraction fibre glass reinforced polymeric composite. International Journal of Machine Tools and Manufacture 2005;45:399-406.
[26] Rawat S, Attia H. Wear mechanisms and tool life management of WC–Co drills during dry high speed drilling of woven carbon fibre composites. Wear 2009;267:1022-30.
[27] Wang X, Kwon PY, Sturtevant C, Lantrip J. Tool wear of coated drills in drilling CFRP. Journal of Manufacturing Processes 2013;15:127-35.
[28] Zheng L, Wang C, Fu L, Yang L, Qu Y, Song Y. Wear mechanisms of micro-drills during dry high speed drilling of PCB. Journal of Materials Processing Technology 2012;212:1989-97.
[29] Zheng X, Dong D, Huang L, Wang X, Chen M. Investigation of tool wear mechanism and tool geometry optimization in drilling of PCB fixture hole. Circuit World 2013;39:195-203.
[30] Mithu M, Fantoni G, Ciampi J, Santochi M. On how tool geometry, applied frequency and machining parameters influence electrochemical microdrilling. CIRP Journal of Manufacturing Science and Technology 2012;5:202-13.
[31] Potz D, Christ W, Dittus B. Diesel nozzle—the determining interface between injection system and combustion chamber. Thermo-and Fluid-Dynamic Processes in Diesel Engines, Springer, Berlin 2002:133-43.
[32] Bannan T, Gerrard C, Wellstead M. Process capability factors in micro-hole drilling of BGA board materials. The EIPC Winter Conference, Budapest2006.
[33] Yoon H-S, Wu R, Lee T-M, Ahn S-H. Geometric optimization of micro drills using Taguchi methods and response surface methodology. International Journal of Precision Engineering and Manufacturing 2011;12:871-5.
[34] Choi B-C, Owen DB. A study of a new process capabily index. Communications in Statistics-Theory and Methods 1990;19:1231-45.
[35] Kudla LA. Fracture phenomena of microdrills in static and dynamic conditions. Engineering fracture mechanics 2011;78:1-12.
[36] Suganthi XH, Natarajan U, Ramasubbu N. A review of accuracy enhancement in microdrilling operations. The International Journal of Advanced Manufacturing Technology 2015;81:199-217.
[37] Charitidis C, Logothetidis S. Nanomechanical and nanotribological properties of carbon based films. Thin Solid Films 2005;482:120-5.
[38] Ronkainen H, Varjus S, Koskinen J, Holmberg K. Differentiating the tribological performance of hydrogenated and hydrogen-free DLC coatings. Wear 2001;249:260-6.
[39] Kalin M, Vižintin J. Differences in the tribological mechanisms when using non-doped, metal-doped (Ti, WC), and non-metal-doped (Si) diamond-like carbon against steel under boundary lubrication, with and without oil additives. Thin solid films 2006;515:2734-47.
[40] Miyake S, Saito T, Yasuda Y, Okamoto Y, Kano M. Improvement of boundary lubrication properties of diamond-like carbon (DLC) films due to metal addition. Tribology International 2004;37:751-61.
[41] Inkin V, Kirpilenko G, Dementjev A, Maslakov K. A superhard diamond-like carbon film. Diamond and Related Materials 2000;9:715-21.
[42] Yang S, Camino D, Jones A, Teer D. Deposition and tribological behaviour of sputtered carbon hard coatings. Surface and Coatings Technology 2000;124:110-6.
[43] Derflinger V, Brändle H, Zimmermann H. New hard/lubricant coating for dry machining. Surface and coatings technology 1999;113:286-92.
[44] Kao W. Tribological properties and high speed drilling application of MoS 2–Cr coatings. Wear 2005;258:812-25.
[45] Kao W. Optimized aC: W x% coatings with enhanced tribological properties and improved micro-drilling performance. Surface and Coatings Technology 2007;201:7392-400.
[46] Kao W. High-speed drilling performance of coated micro-drills with Zr–C: H: N x% coatings. Wear 2009;267:1068-74.
[47] Kao WH, Su Y, Yao SH, Huang H, Chen M. The study of high speed micro-drilling performance and machining quality of coated micro-drills with Zr-C: H coatings. Advanced Materials Research: Trans Tech Publ; 2012. p. 342-6.
[48] Yao S, Su Y, Kao W, Cheng K, Su C. Nanolayer CrNx/WNy coatings used on micro drills for machining of printed circuit boards. Journal of Materials Processing Technology 2010;210:660-8.
[49] Kang M, Je S, Kim K, Shin B, Kwon D, Kim J. Cutting performance of CrN-based coatings tool deposited by hybrid coating method for micro drilling applications. Surface and Coatings Technology 2008;202:5629-32.
[50] Wittorf D, Jäger W, Urban K, Gutheit T, Güttler H, Schulz G, et al. Microstructure and growth of MWCVD diamond on Si1− xCx buffer layers. Diamond and Related Materials 1997;6:649-53.
[51] Glozman O, Hoffman A. Adhesion improvement of diamond films on steel subtrates using chromium nitride interlayers. Diamond and Related Materials 1997;6:796-801.
[52] Romero J, Lousa A, Martınez E, Esteve J. Nanometric chromium/chromium carbide multilayers for tribological applications. Surface and Coatings Technology 2003;163:392-7.
[53] Xu Z, Lev L, Lukitsch M, Kumar A. Effects of surface pretreatments on the deposition of adherent diamond coatings on cemented tungsten carbide substrates. Diamond and related materials 2007;16:461-6.
[54] Lopez J, Babaev V, Khvostov V, Albella J. Highly adherent diamond coatings deposited onto WC-Co cemented carbides via barrier interlayers. Journal of materials research 1998;13:2841-6.
[55] Singh RK, Gilbert D, Fitz-Gerald J, Harkness S, Lee D. Engineered interfaces for adherent diamond coatings on large thermal-expansion coefficient mismatched substrates. Science 1996;272:396.
[56] Konyashin IY, Guseva M. Thin films comparable with WC-Co cemented carbides as underlayers for hard and superhard coatings: the state of the art. Diamond and related materials 1996;5:575-9.
[57] Weiser P, Prawer S. Chemical vapour deposition of diamond onto iron based substrates—The use of barrier layers. Diamond and related materials 1995;4:710-3.
[58] Sun CQ, Fu YQ, Yan B, Hsieh J-H, Lau S, Sun X, et al. Improving diamond–metal adhesion with graded TiCN interlayers. Journal of applied physics 2002;91:2051-4.
[59] Miller MK, Liaw P. Bulk metallic glasses: an overview: Springer Science & Business Media; 2007.
[60] Nair B, Priyadarshini BG. Process, structure, property and applications of metallic glasses. AIMS MATERIALS SCIENCE 2016;3:1022-53.
[61] Liu Y, Fujita T, Hirata A, Li S, Liu H, Zhang W, et al. Deposition of multicomponent metallic glass films by single-target magnetron sputtering. Intermetallics 2012;21:105-14.
[62] Huang J, Chu J, Jang J. Recent progress in metallic glasses in Taiwan. Intermetallics 2009;17:973-87.
[63] Chu JP, Lee C-M, Huang R, Liaw P. Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects. Surface and Coatings Technology 2011;205:4030-4.
[64] Liu F, Liaw PK, Jiang W, Chiang C, Gao Y, Guan Y, et al. Fatigue-resistance enhancements by glass-forming metallic films. Materials Science and Engineering: A 2007;468:246-52.
[65] Chuang C-Y, Lee J-W, Li C-L, Chu JP. Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass. Surface and Coatings Technology 2013;215:312-21.
[66] Chu JP, Huang J, Jang JS, Wang Y, Liaw P. Thin film metallic glasses: preparations, properties, and applications. Jom 2010;62:19-24.
[67] Inoue A, Zhang T, Masumoto T. Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Materials Transactions, JIM 1990;31:177-83.
[68] Zhang T, Inoue A, Masumoto T. Amorphous Zr–Al–TM (TM= Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K. Materials Transactions, JIM 1991;32:1005-10.
[69] Inoue A, Zhang T, Masumoto T. Glass-forming ability of alloys. Journal of non-crystalline solids 1993;156:473-80.
[70] Suryanarayana C, Inoue A. Bulk metallic glasses: CRC press; 2010.
[71] Chu C, Jang JS, Chen G, Chiu S. Characteristic studies on the Zr-based metallic glass thin film fabricated by magnetron sputtering process. Surface and Coatings Technology 2008;202:5564-6.
[72] Sharma P, Zhang W, Amiya K, Kimura H, Inoue A. Nanoscale patterning of Zr-Al-Cu-Ni metallic glass thin films deposited by magnetron sputtering. Journal of nanoscience and nanotechnology 2005;5:416-20.
[73] Reichelt K, Jiang X. The preparation of thin films by physical vapour deposition methods. Thin Solid Films 1990;191:91-126.
[74] Sproul WD. Physical vapor deposition tool coatings. Surface and Coatings Technology 1996;81:1-7.
[75] Kelly P, Arnell R. Magnetron sputtering: a review of recent developments and applications. Vacuum 2000;56:159-72.
[76] Bräuer G, Szyszka B, Vergöhl M, Bandorf R. Magnetron sputtering–Milestones of 30 years. Vacuum 2010;84:1354-9.
[77] Castro C, Sanjines R, Pulgarin C, Osorio P, Giraldo S, Kiwi J. Structure–reactivity relations for DC-magnetron sputtered Cu-layers during E. coli inactivation in the dark and under light. Journal of Photochemistry and Photobiology A: Chemistry 2010;216:295-302.
[78] Randhawa H. Cathodic arc plasma deposition technology. Thin Solid Films 1988;167:175-86.
[79] Randhawa H, Johnson P. A review of cathodic arc plasma deposition processes and their applications. Surface and Coatings Technology 1987;31:303-18.
[80] Anders A. Some applications of cathodic arc coatings. Cathodic Arcs: Springer; 2008. p. 1-62.
[81] Boxman R, Goldsmith S. Macroparticle contamination in cathodic arc coatings: generation, transport and control. Surface and Coatings Technology 1992;52:39-50.
[82] McClure G. Plasma expansion as a cause of metal displacement in vacuum‐arc cathode spots. Journal of Applied Physics 1974;45:2078-84.
[83] Baouchi AW, Perry AJ. A study of the macroparticle distribution in cathodic-arc-evaporated TiN films. Surface and Coatings Technology 1991;49:253-7.
[84] Martin P, McKenzie D, Netterfield R, Swift P, Filipczuk S, Müller K, et al. Characteristics of titanium arc evaporation processes. Thin Solid Films 1987;153:91-102.
[85] Daalder J. Components of cathode erosion in vacuum arcs. Journal of Physics D: Applied Physics 1976;9:2379.
[86] Shiao M-H, Shieu F-S. A formation mechanism for the macroparticles in arc ion-plated TiN films. Thin Solid Films 2001;386:27-31.
[87] Li M, Wang F. Effects of nitrogen partial pressure and pulse bias voltage on (Ti, Al) N coatings by arc ion plating. Surface and Coatings Technology 2003;167:197-202.
[88] Zhang M, Lin G, Dong C, Wen L. Amorphous TiO 2 films with high refractive index deposited by pulsed bias arc ion plating. Surface and Coatings Technology 2007;201:7252-8.
[89] Wang L, Zhang S, Chen Z, Li J, Li M. Influence of deposition parameters on hard Cr–Al–N coatings deposited by multi-arc ion plating. Applied Surface Science 2012;258:3629-36.
[90] Matsue T, Hanabusa T, Ikeuchi Y. Dependence to processing conditions of structure in TiN films deposited by arc ion plating. Vacuum 2004;74:647-51.
[91] Cheng Z, Wang M, Zou J. Thermal analysis of macroparticles during vacuum arc deposition of TiN. Surface and Coatings Technology 1997;92:50-5.
[92] Akari K, Tamagaki H, Kumakiri T, Tsuji K, Koh E, Tai C. Reduction in macroparticles during the deposition of TiN films prepared by arc ion plating. Surface and Coatings Technology 1990;43:312-23.
[93] Liu S, Liu F, Xu C, Zhang H. Experimental investigation on arc characteristic and droplet transfer in CO 2 laser–metal arc gas (MAG) hybrid welding. International Journal of Heat and Mass Transfer 2013;62:604-11.
[94] Mason TJ. Ultrasonic cleaning: An historical perspective. Ultrasonics sonochemistry 2016;29:519-23.
[95] McQueen D. Frequency dependence of ultrasonic cleaning. Ultrasonics 1986;24:273-80.
[96] Busnaina A, Kashkoush I. The effect of time, temperature and particle size on submicron particle removal using ultrasonic cleaning. Chemical Engineering Communications 1993;125:47-61.
[97] Crum LA. The role of acoustic cavitation in megasonic cleaning. Acustica 1996;82:132.

無法下載圖示 全文公開日期 2022/08/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE