簡易檢索 / 詳目顯示

研究生: 林新益
Xin-yi Lin
論文名稱: 線性壓電陶瓷馬達之高效能運動控制研究
High Performance Motion Control of Linear Piezoelectric Ceramic Motors
指導教授: 林紀穎
Chi-ying Lin
口試委員: 陳炤彰
Chao-chang Chen
林仲廉
Jonq-lan Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: PID類神經網路反覆控制線性壓電陶瓷馬達運動控制
外文關鍵詞: PID, Neural network, Repetitive control, Linear piezoelectric ceramic motors, Motion control
相關次數: 點閱:187下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的提出與傳統控制架構相異之高效能運動控制架構, 是一種效果加
乘之控制架構概念, 控制架構以PID 為基底加入類神經網路、前饋摩擦模型與反
覆控制, 本研究實現控制架構於線性壓電陶瓷馬達平台之運動控制, 達到精密定
位功能。控制架構的建立為提出一個概念性的高效能運動控制架構並根據系統特
性進行補償, 我們藉此作為控制線性壓電陶瓷馬達平台的運動控制。本研究首先
依據系統特性, 我們使用PID 控制作一個全域性的控制, 其次, 我們使用智慧型
控制中的類神經控制器控制系統不確定項。再者, 我們建立系統摩擦模型進行摩
擦補償並對系統所要追蹤的週期訊號使用反覆控制可以進一步改善PID控制所無
法降低的週期誤差並透過控制器加乘的概念達到改善系統效能。實驗部分, 我們
首先探討各單獨的控制器與前饋摩擦模型控制器組合的結果作比較, 最後, 本研
究依據本文中所提出的架構結合前饋摩擦模型補償平台的摩擦力, 透過軌跡追蹤
的運動控制中, 經由實驗驗證能確實的提升控制器效能。


Linear Piezoelectric Ceramic Motors (LPCM) have been recognized as one kind of useful actuators in recent mechatronics and automation industries. Due to their dominant nonlinear effects such as friction and hysteresis, controller design for LPCM has become a challenging task for researchers. The current literature related to motion control of LPCM shows that the designers mostly suffer from either complicated friction modeling for compensation or numerous parameters tuning by using intelligent control algorithms. Following the idea of “add-ons” controller design, this thesis proposes a novel hybrid control structure, comprising of PID control, repetitive control, and neural network adaptive control, to achieve high performance and easy maintainability for motion control of LPCM. The experimental results on tracking motion control of a LPCM demonstrate the effectiveness of the proposed method. Moreover, the study also adds a LuGre friction model based feedforward compensator to the hybrid controller for comparison purposes and further performance improvement. Biaxial motion control experiments are finally provided to justify the applicability of this method.

摘要I Abstract II 致謝II 目錄III 圖目錄VI 表目錄X 1 緒論1 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 本文貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 本文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 系統設置7 2.1 雙軸運動平台. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 壓電陶瓷馬達. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 光柵尺. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 實驗用電腦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.1 Host電腦. . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.2 Target電腦. . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 資料擷取卡. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5.1 NI PCI-6052E DAQ Card . . . . . . . . . . . . . . . . . 9 2.5.2 MCC PCI-QUAD04 . . . . . . . . . . . . . . . . . . . . 9 III 3 運動控制器設計. . . . . . . . . . . . . . . . . . . . . . . . .10 3.1 PID控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 輻射基底函數類神經設計[53] . . . . . . . . . . . . . . . . . . . 13 3.2.1 自適應式輻狀基底函數類神經設計. . . . . . . . . . . . . 16 3.2.2 監督式輻狀基底函數類神經設計. . . . . . . . . . . . . . 18 3.3 反覆控制器設計[54] . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3.1 傳統反覆控制器設計. . . . . . . . . . . . . . . . . . . . 20 3.3.2 本研究反覆控制器設計[8] . . . . . . . . . . . . . . . . . 22 3.3.3 反覆控制穩定度分析. . . . . . . . . . . . . . . . . . . . 24 3.4 前饋摩擦模型[53] . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 高效能運動控制器設計. . . . . . . . . . . . . . . . . . . . . . . 29 4 實驗結果與分析 4.1 系統識別. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 控制器實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.1 單一控制器實驗. . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 複合控制架構實驗. . . . . . . . . . . . . . . . . . . . . 39 4.2.3 梯形運動曲線追蹤實驗. . . . . . . . . . . . . . . . . . . 47 4.3 強健性實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 無干擾實驗. . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.2 高頻大干擾實驗. . . . . . . . . . . . . . . . . . . . . . . 58 4.3.3 高頻小干擾實驗. . . . . . . . . . . . . . . . . . . . . . . 59 4.3.4 低頻大干擾實驗. . . . . . . . . . . . . . . . . . . . . . . 60 4.3.5 低頻小干擾實驗. . . . . . . . . . . . . . . . . . . . . . . 61 4.4 雙軸同動實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4.1 1 mm 循圓軌跡實驗. . . . . . . . . . . . . . . . . . . . 62 IV 4.4.2 10 mm 循圓軌跡實驗. . . . . . . . . . . . . . . . . . . . 73 4.4.3 真圓度分析. . . . . . . . . . . . . . . . . . . . . . . . . 85 5 結論與未來發展. . . . . . . . . . . . . . . . . . . . . . . . . 89

[1] Lin F.J., Shieh P.H., Chou P.H. Robust adaptive backstepping motion control
of linear ultrasonic motors using fuzzy neural network. Fuzzy Systems, IEEE
Transactions on, 2008. 16(3): p. 676-692.
[2] Lin F.J.,Wai R.J., Shyu K.K., Liu T.M. Recurrent fuzzy neural network control
for piezoelectric ceramic linear ultrasonic motor drive. IEEE Transactions
on Ultrasonics, Ferroelectrics and Frequency Control 2002;48(4): p.
900-913.
[3] Wai R.J., Lin C.M., Peng Y.F. Robust CMAC neural network control for
LLCC resonant driving linear piezoelectric ceramic motor. Control Theory
and Applications, IEE Proceedings, 2003. 150(3): p. 221-232.
[4] Tan K., Huang S., Lee T. Robust adaptive numerical compensation for friction
and force ripple in permanent-magnet linear motors. Magnetics, IEEE
Transactions on, 2002. 38(1): p. 221-228.
[5] Tan K., Lee T.H., Zhou H.X. Micro-positioning of linear-piezoelectric motors
based on a learning nonlinear PID controller.Mechatronics, IEEE/ASME
Transactions on, 2002. 6(4): p. 428-436.
[6] Kosmatopoulos E.B., Polycarpou M.M., Christodoulou M.A., Ioannou P.A.
High-order neural network structures for identification of dynamical systems.
Neural Networks, IEEE Transactions on, 2002. 6(2): p. 422-431.
[7] Chen Y.C., Teng C.C. A model reference control structure using a fuzzy neural
network. Fuzzy Sets and Systems, 1995. 73(3): p. 291-312.
91
[8] Lin C.Y., Tsao T.C. Adaptive Control with InternalModel for High Precision
Motion Control. ASME Conference Proceedings Mechanical Systems and
Control, Parts A, B, and C, 2007. 9: p. 1021-1029.
[9] Jamaludina Z., Van Brussel H., Pipeleersa G., Sweversa J. Accurate motion
control of xy high-speed linear drives using friction model feedforward and
cutting forces estimation. CIRP Annals-Manufacturing Technology, 2008.
57(1): p. 403-406.
[10] Lu L., Yao B., Wang Q., Chen Z. Adaptive robust control of linear motors
with dynamic friction compensation using modified LuGre model. Automatica,
2009. 45(12): p. 2890-2896.
[11] Papadopoulos E.G., Chasparis G.C. Analysis and model-based control of
servomechanisms with friction. Intelligent Robots and Systems, 2002. 3:p.
2109-2114.
[12] Ramasubramanian A., Ray L.R. Comparison of EKBF-based and classical
friction compensation. Journal of Dynamic Systems, Measurement, and Control,
2007. 129(2): p. 236-242.
[13] Padthe A., Drincic B., Jinhyoung O., RizosD., Fassois S., Bernstein
D. Duhem modeling of friction-induced hysteresis. Control Systems
Magazine, IEEE, 2008. 28(5): p. 90-107.
[14] deWit C.C., Olsson H., Astrom K.J., Lischinsky P. Dynamic friction models
and control design. American Control Conference, 1993. :p.1920-1926.
[15] Fung R.F., Han C.F., Chang J.R. Dynamic modeling of a high-precision selfmoving
stage with various frictional models. Applied Mathematical Modelling,
2008. 32(9): p. 1769-1780.
92
[16] Johnson C.T., Lorenz R.D. Experimental identification of friction and its
compensation in precise, position controlled mechanisms. Industry Applications,
IEEE Transactions on, 1992. 28(6): p. 1392-1398.
[17] Zhu W.H. FPGA-based adaptive friction compensation for precision control
of harmonic drivers, Robotics and Automation (ICRA), 2010 IEEE International
Conference on, 2010. 1: p. 4657-4662.
[18] Ishikawa J., Tei S., Hoshino D., Izutsu M., Kamamichi N. Friction compensation
based on the LuGre friction model, SICE Annual Conference 2010,
Proceedings of , 2010. 1:p. 9-12.
[19] Rizos, D.D., Fassois S.D. Friction identification based upon the LuGre and
Maxwell slip models. Control Systems Technology, IEEE Transactions on,
2009. 17(1): p. 153-160.
[20] Tan K.K, Lee T.H., Huang S.N., Xi J. Friction modeling and adaptive compensation
using a relay feedback approach. Industrial Electronics, IEEE
Transactions on, 2001. 48(1): p. 169-176.
[21] Freidovich L., Robertsson A., Shiriaev A., Johansson R. LuGre-Model-
Based Friction Compensation. Control Systems Technology, IEEE Transactions
on, 2010. 18(1): p. 194-200.
[22] Wang Y., Wang D., Chai T. Modeling and control compensation of nonlinear
friction using adaptive fuzzy systems. Mechanical Systems and Signal
Processing, 2009. 23(8): p. 2445-2457.
[23] Yanada H.,Sekikawa Y. Modeling of dynamic behaviors of friction. Mechatronics,
2008. 18(7): p. 330-339.
[24] Wenjing Z. Parameter Identification of LuGre Friction Model in Servo System
Based on Improved Particle Swarm Optimization Algorithm. Chinese
Control Conference, 2007. 1: p. 135-139
[25] Madi M., Khayati K., Bigras P. Parameter estimation for the LuGre friction
model using interval analysis and set inversion. Systems, Man and Cybernetics,
2004 IEEE International Conference on, 2004. 1: p. 428-433.
[26] Wang Y., Xiong Z., Ding H. Robust controller based on friction compensation
and disturbance observer for a motion platform driven by a linear motor.
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering, 2006. 220(1): p. 33-39.
[27] Zhong J., Yao B. Adaptive robust precision motion control of a piezoelectric
positioning stage. Control Systems Technology, IEEE Transactions on, 2008.
16(5): p. 1039-1046.
[28] Lin F.J.,Wai R.J., Huang P.K. Two-axis motion control system using wavelet
neural network for ultrasonic motor drives. Electric Power Applications, IEE
Proceedings, 2004. 151(5): p. 613-621.
[29] Mainali K., Panda S.K., Xu J.X., Senjyu T. Repetitive position tracking performance
enhancement of linear ultrasonic motor with sliding mode-cumiterative
learning control. Mechatronics, 2004. ICM ’04. Proceedings of the
IEEE International Conference on, 2004. 1: p. 352-357.
[30] Wai R.J., Tu C.H. Adaptive grey control for hybrid resonant driving linear
piezoelectric ceramic motor. Industrial Electronics, IEEE Transactions on,
2006. 53(2): p. 640-656.
[31] LiW., Cheng X. Adaptive high-precision control of positioning tables-theory
and experiments. Control Systems Technology, IEEE Transactions on, 1994.
2(3): p. 265-270.
[32] Xu L., Yao B. Adaptive robust precision motion control of linear motors
with negligible electrical dynamics: theory and experiments. Mechatronics,
IEEE/ASME Transactions on, 2001. 6(4): p. 444-452.
[33] Su Y.X., Duan B.Y., Zheng C.H., Zhang Y.F., Chen G.D., Mi
J.W. Disturbance-rejection high-precision motion control of a Stewart platform.
Control Systems Technology, IEEE Transactions on, 2004. 12(3): p.
364-374.
[34] Hsu C.F. Intelligent position tracking control for LCM drive using stable
online self-constructing recurrent neural network controller with bound architecture.
Control Engineering Practice, 2009. 17(6): p. 714-722.
[35] Senjyu T., Kashiwagi T., Uezato K. Position control of ultrasonic motors
using MRAC with dead-zone compensation. Industrial Electronics, IEEE
Transactions on, 2001. 48(6): p. 1278-1285.
[36] Chen J.S., Chen K.C., Lai Z.C., Huang Y.K. Friction characterization and
compensation of a linear-motor rolling-guide stage. International Journal of
Machine Tools and Manufacture, 2003. 43(9): p. 905-915.
[37] Peng Y.F., Wai R.J., Lin C.M. Implementation of LLCC-resonant driving
circuit and adaptive CMAC neural network control for linear piezoelectric
ceramic motor. Industrial Electronics, IEEE Transactions on, 2004. 51(1):
p. 35-48.
[38] Wai R.J., Lee J.D. Intelligent motion control for linear piezoelectric ceramic
motor drive. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 2004. 34(5): p. 2100-2111.
[39] Peng Y.F. and Lin C.M. Intelligent motion control of linear ultrasonic motor
with H¥ tracking performance. Control Theory & Applications, IET, 2007.
1(1): p. 9-17.
[40] Selmic R.R., Lewis F.L. Neural-network approximation of piecewise continuous
functions: application to friction compensation. Neural Networks, IEEE
Transactions on, 2002. 13(3): p. 745-751.
[41] Lin F.J., Wai R.J., Chen M.P. Wavelet neural network control for linear ultrasonic
motor drive via adaptive sliding-mode technique. Ultrasonics, Ferroelectrics
and Frequency Control, IEEE Transactions on, 2003. 50(6): p.
686-698.
[42] Wai R.J., Tu C.H. Design of total sliding-mode-based genetic algorithm control
for hybrid resonant-driven linear piezoelectric ceramic motor. Power
Electronics, IEEE Transactions on, 2007. 22(2): p. 563-575.
[43] Choi J.J., Han S.I., Kim J.S. Development of a novel dynamic friction model
and precise tracking control using adaptive back-stepping sliding mode controller.
Mechatronics, 2006. 16(2): p. 97-104.
[44] Mainali K., Panda S., Xu J. Position tracking of linear piezoelectric motor
using sliding mode control with closed-loop filtering. Industrial Electronics
Society, 2004. 3: p. 2406-2411.
96
[45] Senjyu T., Miyazato H., Yokoda S., Uezato K. Position control of ultrasonic
motors using neural network. Proceedings of the IEEE International Symposium
on, 1996. 1: p. 368-373.
[46] Wai R.J., Robust control of linear ceramic motor drive with LLCC resonant
technique. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions
on, 2003. 50(7): p. 911-920.
[47] Senjyu T., Yokoda S., and Uezato K., Speed control of ultrasonic motors
using fuzzy neural network. Journal of Intelligent and Fuzzy Systems, 2000.
8(2): p. 135-146.
[48] Wai R.J. and Su K.H., Supervisory control for linear piezoelectric ceramic
motor drive using genetic algorithm. Industrial Electronics, IEEE Transactions
on, 2006. 53(2): p. 657-673.
[49] Landolsi F., Ghorbel F., Lou J., Lu H., Sun Y. Nanoscale friction dynamic
modeling. Journal of Dynamic Systems, Measurement, and Control, 2009.
131: p. 061102.
[50] Tsao T.C. Optimal feed-forward digital tracking controller design. Journal
of Dynamic Systems, Measurement, and Control 1994;116(4):583-592.
[51] Otten G., de Vries T.J.A., van Amerongen J., Rankers A.M., Gaal
E.W. Linear motor motion control using a learning feedforward controller.
IEEE/ASME Trans Mechatronics 1997;2(3):179-187.
[52] Dahleh M. A., Diaz-Bobillo I. Control of uncertain systems: a linear programming
approach, Prentice-Hall, 1995.
[53] 劉金琨. 智能控制(第二版), 電子工業出版社, 2009.
[54] Tomizuka M., Tsao T.C., Chew K. Analysis and synthesis of discrete-time
repetitive controllers. ASME Journal of Dynamic Systems, Measurement, and
Control 1989;111(3), 353-358.

QR CODE