簡易檢索 / 詳目顯示

研究生: 戴育漢
Yu-han Tai
論文名稱: 應用模糊類神經網路於熔融紡絲紗線直徑與均勻度線上控制
On-Line Control of Yarn Diameter and Evenness by Fuzzy Neural Networks in Melt Spinning
指導教授: 黃昌群
Chang-Chiun Huang
口試委員: 邱士軒
Shih-Hsuan Chiu
郭中豐
Chung-Feng Jeffrey Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 57
中文關鍵詞: 紗線均勻度模糊類神經網路線上控制
外文關鍵詞: yarn evenness, fuzzy neural network, on-line control
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在熔融紡絲製造過程中,紗線均勻度影響紗的外觀、毛羽、強度與產率等性質,進而影響產品生產、利潤與產品棄置不符使用等問題,紗線變異大亦造成紗線的瑕疵,而變異小的紗線可產生較穩定的品質。本研究應用模糊類神經網路控制理論於熔融紡絲機台,藉捲取羅拉轉速的改變調整紗線直徑,以控制紗線直徑平均值於目標值及降低紗線直徑之變異。本文以直徑誤差與直徑誤差變化量為輸入,捲取羅拉轉速增加量為輸出,經模糊類神經網路的學習來調整第二層歸屬函數的中心點與標準偏差值和調整第三至四層的連結權重值,以達到收斂和學習之效果,經由模糊類神經網路控制器能維持紗線直徑平均值及降低紗線直徑的變異,印證所提之方法可成功地應用在紗線均勻度之線上控制。


    In melt spinning, the yarn evenness plays a critical role in appearance, hairiness, strength, and productivity of yarn, and further affects its production, profit, disposal of the unqualified products. Larger variance of yarn also causes defects of yarn, while yarn with smaller variance will yield more uniform quality. In this study, fuzzy neural network controllers maintain the mean value of yarn diameter at the desired value and reduce the yarn diameter variance. The control law is implemented in a laboratory scale of the melt spinning setup and the take-up roll speed is adjustable to regulate the yarn diameter. The diameter error and its variation are the inputs and the increased amount take-up roll speed is the output. The learning of fuzzy neural network adjusts the center and standard deviation of membership functions in the second layer and link weight values of the third to fourth layer to achieve the effect of convergence and learning. The fuzzy neural network controller can maintain the mean value of yarn diameter at the desired value and lower the variance of yarn diameter. The proposed approaches has been carried out successfully in on-line control of the yarn evenness.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VII 表索引 IX 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻回顧 2 1.3 論文架構 5 1.4 研究流程 6 第二章 實驗設備與儀器 7 2.1 熔融紡絲 7 2.1.1 壓出機 10 2.1.2 齒輪幫浦 11 2.1.3 紡絲延伸過程 12 2.2 資料擷取模組 13 2.3 雙軸向雷射型感測器 14 第三章 研究理論 16 3.1 模糊理論 16 3.1.1 模糊集合 17 3.2類神經網路 21 3.2.1類神經網路基本理論 22 3.2.2類神經網路基本架構 23 3.2.3倒傳遞類神經網路 26 3.2.4倒傳遞類神經網路演算法 28 3.3模糊類神經網路 31 3.3.1模糊類神經網路架構 32 3.3.2各層類神經元的計算 33 3.2.3模糊歸屬函數學習演算法 34 第四章 實驗規劃與結果分析 37 4.1實驗規劃 37 4.1.1模糊類神經網路控制器設計 38 4.1.2材料介紹與機台設定 46 4.2 實驗結果 47 第五章 結論 53 5.1結論及建議 53 5.1結論 53 5.2建議 53 參考文獻 54

    [1]C. Jinan, T. Kikutani, A. Takaku and J. Shimizu, “Nonisothermal Orientation-Induced Crystallization in Melt Spinning of Polypropylene,” Journal of Applied Polymer Science, Vol. 37, pp. 2686-2697, 1989.
    [2]A. Dutta and V. M. Nadkarni, “Identifying Critical Process Variables in Poly(ethylene Terephthalate) Melt Spinning,” Textile Research Journal, Vol. 54, No. 1, pp. 35-42, 1984.
    [3]S. Chen, W. Yu and J. E. Spruiell, “On-Line Studies of Structure Development during Melt Spinning of Poly(butylenes Telephthalate),” Journal of Applied Polymer Science, Vol. 34, pp. 1477-1492, 1987.
    [4]K. F. Zieminski and J. Spruiell, “On-Line Studies and Computer Simulation of the Melt Spinning of Nylon-66 Filaments,” Journal of Applied Polymer Science, Vol. 35, pp. 2223-2245, 1988.
    [5]Y. C. Bhuvanesh and V. B. Gupta, “Computer Simulation of Melt Spinning of Polypropylene Fibers Using a Steady-State Model,” Journal of Applied Polymer Science, Vol. 58, pp. 663-674, 1995.
    [6]H. L. Davis, F. J. Gorman and J. L. Wesley, “Continuous Monitor Of Yarn Uniformity During Melt Spinning,” Textile Research Journal, Vol. 48, pp. 329-334, 1978.
    [7]W. Cai, J. W. Li, G. B. Zhang and C. X. Li, “Weighted Adaptive Generalized Predictive Control for Carding Autoleveler,” Journal of Shanghai Jiaotong University, Vol. 11 E, pp. 436-439, 2006.
    [8]N. Miura, M. Imaeda, K. Hashimoto, R. K. Wood, H. Hattori and M. Onishi, “Auto-Tuning PID Controller Based on Generalized Minimum Variance Control for a PVC Reactor,” Journal of Chemical Engineering of Japan, Vol. 31, No. 4, pp. 626-632, 1998.
    [9]T. Senjyu, R. Sakamoto, N. Urasaki, H. Higa, K. Uezato and T. Funabashi, “Output Power Control of Wind Turbine Generator by Pitch Angle Control Using Minimum Variance Control,” Electrical Engineering in Japan, Vol. 154, No. 2, pp. 10-18, 2006.
    [10]J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, New Jersey,1991.
    [11]S. Li and Y. Xi, “Fuzzy-Neural Network Control of Nonlinear Dynamic Systems,” Journal of Systems Engineering and Electronics, Vol. 11, No. 1, pp. 61-66, 2000
    [12]R. J. Wai,“Hybrid Fuzzy Neural-Network Control for Nonlinear Motor-Toggle Servomechanism,” IEEE Transactions on Control Systems Technology, Vol. 10, No. 4, pp. 519-532, 2002.

    [13]F. J. Lin, W. J. Hwang and R. J. Wai,“A Supervisory Fuzzy Neural Network Control System for Tracking Periodic Inputs,” IEEE Transactions on Fuzzy Systems, Vol. 7, No. 1, pp. 41-52, 1999.

    [14]R. J. Wai and L. J. Chang, “Stabilizing and Tracking Control of Nonlinear Dual-axis Inverted-pendulum System Using Fuzzy Neural Network,” IEEE Transactions on Fuzzy Systems, Vol. 14, No. 1, pp. 145-168, 2006.
    [15]F. J. Lin, R. J. Wai and C. C. Lee, “Fuzzy Neural Network Position Controller for Ultrasonic Motor Drive Using Push-pull DC-DC Converter,” IEE Proceedings Control Theory pplication, Vol. 146, No. 1, pp. 99-107, 1999.
    [16]Y. C. Chen and C. C. Teng, “Model Reference Control Structure Using a Fuzzy Neural Network,” Fuzzy Sets and Systems, Vol. 73, No. 3, pp. 291-312, 1995.
    [17]X. Y. Wang, H. X. Xi,N. Ren and L. Xue, “Speed Regulator of Brushless DC Electric Motor Based on Fuzzy Neural Network,” Tianjin Daxue Xuebao, Vol. 36. No. 6, pp. 714-718, 2003.
    [18]F. J. Lin, R. J. Wai and H. H. Lin, “Adaptive Fuzzy-neural-network Controller for Ultrasonic Motor Drive Using the LLCC Resonant Technique,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 46, No. 3, pp. 715-727, 1999.
    [19]F. J. Lin, R. J. Wai, and H. P. Chen, “A PM Synchronous Servo Motor Drive with an On-line Trained Fuzzy Neural Network Controller,” IEEE Trans. Energy Conversion, Vol. 13, pp. 319–325, 1998.
    [20]S. Kase and T. Matsuo, “Studies on Melt Spinning. I. Fundamental Equation on the Dynamics of Melt Spinning,” Journal of Applied Polymer Science, Vol. 3, pp. 2541-2554 , 1965.
    [21]S. Kase and T. Matsuo, “Studies on Melt Spinning. II. Steady-State and Transient Solutions of Fundamental Equation Compared with Experimental Results,” Journal of Applied Polymer Science, Vol. 11, pp. 251-287, 1967.
    [22]A. Ziabicki, Fundamentals of Fiber Formation, John Wiley, London, 1976.
    [23]Z. Tadmor and C. G. Gogos, Principle of Polymer Processing, John Wiley, New York, 1979.
    [24]王進德, ”類神經網路與模糊控制理論入門與應用”, 全華科技圖書股份有限公司, 2007
    [25]Zadeh, L. A., ”Fuzzy set”, Inform. Control, Vol. 8, pp. 338-353, 1965.
    [26]葉怡成, ”類神經網路模式應用與實作”, 儒林圖書, 2009
    [27]T. Fukuda and T. Shibata, “Theory and applications of neural networks for industrial control systems,” IEEE Transactions on Industrial Electronics, Vol. 39, pp. 472-489, 1992.

    無法下載圖示 全文公開日期 2018/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE