簡易檢索 / 詳目顯示

研究生: 陳有斌
Yu-Bin Chen
論文名稱: 石墨烯光電應用研究之發展趨勢:學術論文之主路徑分析
A Study of the Technology Development Trend in Graphene for Optoelectronics : The Main Path Approach
指導教授: 劉顯仲
John S. Liu
口試委員: 何秀青
none
高至鈞
none
黃彥聖
none
盧煜煬
none
學位類別: 博士
Doctor
系所名稱: 管理學院 - 管理研究所
Graduate Institute of Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 石墨烯石墨烯光電應用知識傳遞引文分析主路徑分析
外文關鍵詞: graphene, graphene for optoelectronics, knowledge transfer, citation analysis, main path analysis
相關次數: 點閱:277下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯(Graphene)被視為很可能改變未來世界的神奇材料,它是一種由碳原子以sp2雜化軌道組成呈六角形蜂巢晶格結構的二維平面薄膜材料,由於具有良好的導電性與透光性,以及輕薄、堅韌、可撓性等優點,在光電應用方面,潛力無窮且前景極為看好。近年來石墨烯光電應用方面的技術發展快速且廣泛,然而,有系統且完整的介紹有關石墨烯光電應用研究與發展架構的文獻鮮少,大部分以非系統性方式從技術面探討其科技內涵。
    本研究乃將石墨烯光電應用相關文獻之引文透過一套有規則的主路徑分析法進行分析,所得之結果有別於回顧性研究的結果,主路徑分析法較不會有遺漏且可以得到系統性及量化的資訊。首先透過WOS資料庫檢索石墨烯光電應用方面之研究文獻,建構一個引文網路,再使用主路徑分析法計算文獻間引證連結的強度,形成主要發展路徑,以找出石墨烯光電應用領域研究中重要且較具影響力之文獻,用以理出該學科領域的主要發展脈絡及知識擴散路徑,並藉以了解石墨烯光電應用領域研究的重要議題及未來可能的發展動向。本研究也使用g-index及h-index找出此領域中具影響力的重要學者及學術期刊。
    本研究以逐步主路徑、總體主路徑及關鍵延伸主路徑三種主路徑方法分析1233篇相關論文,結果篩選出重要且較具影響力之文獻,研究發現:
    1.主路徑分析法可以全面地鳥瞰石墨烯光電應用技術的發展過程及其重要趨勢,並顯示支領域的分合情況,並可把複雜的引用網路簡化,顯示一連串重要研發項目的發展順序,呈現知識的傳承、累積及其前後影響關係。
    2.自2006年至2012年,石墨烯光電應用研究之發展情況大致可分為兩個階段,第一個階段(2006年至2008年)屬於早期基礎研究,較偏重於石墨烯材料的製備合成及材料性質之研究;第二個階段(2009年至2012年)除了探討製備方式外,也兼顧光電應用方面的研究。
    3.第二個階段的研究論文形成三條路徑,而依論文之性質可分為化學氣相沈積法製備方式(CVD)、還原石墨烯氧化物法(rGO)製備方式及雷射裝置應用(laser devices)三個重要群組。
    4.2010年後,石墨烯光電應用產品(device fabrication)之研究紛紛出現,主要著重於透明薄膜或透明電極的研製。
    5.在石墨烯光電應用研究領域的主要研究團隊包括Ruoff、Nguyen 、Zhang、Kamat、Colombo、Popa 、Hong 、Coleman、Huang、Zhi及Loh等團隊。資料顯示,此領域的研究發展除了美國及英國等科技大國之外,亞洲國家中,新加坡與中國的實力也很強,南韓的表現也不容忽視。


    Considered as the “Miracle Material” that could change the world, graphene was the first two-dimensional material to be discovered. Due to its excellent conductivity, transparency, thinness, toughness, and flexibility, graphene has become a very useful material in optoelectronics applications. In recent years, research and development (R&D) on graphene for optoelectronics applications has made rapid progress on an extensive scale. However, there is not much research literature providing a systematic and comprehensive introduction of the development of graphene applications in the optoelectronics field. Most general reviews of the literature explore its technological content simply through a non-systematic perspective.
    By analyzing the literature citations by using a set of rules from the main path analysis, this study obtains results that are different from the method of the review literature. The main path analysis method can get rid of missing information and also find systematic and quantitative information. First, through the WOS database retrieval of the research literature on graphene applications for optoelectronics, a citation network is set up. Second, the strength between the literature-cited linkages by applying the main path analysis method is calculated. Finally, the main development path is formed in order to discover the important and influential literature in the field of graphene applications for optoelectronics. Furthermore, this study maps major developments in the context of the subject and knowledge diffusion paths so as to identify the important research topics and their possible future developments. The g-index and h-index are also used in this study as tools to see the influential scholars and academic journals in this field.
    This study uses the local main path, global main path, and key-route main path as the three methods to analyze a total of 1233 papers and to filter out the important and influential literature. The findings are as follows.
    1. The main path analysis method provides a full bird’s eye view of the technological development of graphene applications for optoelectronics and the important trends. It also shows the division and unification of each sub-area, simplifies any complicated reference network, and indicates the series (in order) of important R&D projects, thus presenting the transfer, accumulation, and sequential relationship of knowledge.
    2. From 2006 to 2012, the R&D of graphene applications for optoelectronics can be divided into 2 stages: the first stage (2006-2008) belongs to the early basic research period, with an emphasis on graphene preparation and material properties; the second stage (2009-2012) is when researchers devoted efforst to exploring not only its preparation, but also its applications.
    3. During the second stage, research papers were found to form three paths. In terms of methodology, they are classified as 3 groups: CVD, rGO, and laser devices.
    4. Since 2009, research studies about graphene applications, such as device fabrication, have been emerging continuously, mainly focusing on transparent film or transparent electrodes.
    5. In the field of graphene applications for optoelectronics, the important research teams include Ruoff, Nguyen, Zhang, Popa, Hong, Kamat, Colombo, Zhi, Loh, Huang, and Coleman. As shown in the data, those countries taking the lead in graphene R&D are the United States and the United Kingdom. Aside from these two leaders, Singapore and China are strong in this field, and South Korea is also doing very well.

    目 錄 中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 Ⅴ 目錄 Ⅵ 圖表索引 Ⅷ 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 論文架構與研究流程 3 第貳章 文獻探討 5 第一節 引文分析 5 第二節 主路徑分析 8 第三節 g-index與h-index 20 第參章 研究方法 21 第一節 研究資料 21 資料來源 21 資料蒐集與關鍵字檢索 21 第二節 期刊與作者基本統計 24 第三節 主路徑分析法 24 第四節 主路徑分析軟體應用 25 第肆章 研究結果與分析 27 第一節 期刊與作者基本統計 27 期刊統計 27 作者統計 28 第二節 石墨烯光電應用學術論文主路徑分析 30 逐步主路徑 30 總體主路徑 34 關鍵延伸主路徑 38 第伍章 結論與建議 54 第一節 研究結論 54 第二節 管理意涵 55 第三節 研究限制 56 第四節 研究建議 56 參考文獻 英文文獻 58 圖表索引 圖1-1 石墨烯蜂巢晶格結構 2 圖1-2 研究架構圖 4 圖2-1 SPC演算法範例說明 9 圖4-1 石墨烯光電應用研究學術論文的逐步主路徑 32 圖4-2 石墨烯光電應用研究學術論文的總體主路徑 35 圖4-3 石墨烯光電應用研究學術論文的top 10關鍵延伸主路徑 40 圖4-4 石墨烯光電應用研究學術論文的top 20關鍵延伸主路徑 41 圖4-5 石墨烯光電應用研究學術論文的top 21關鍵延伸主路徑 42 圖4-6 石墨烯光電應用研究學術論文的top 22關鍵延伸主路徑 43 圖4-7 石墨烯光電應用研究學術論文的top 40關鍵延伸主路徑 45 表2-1 主路徑分析研究重要文獻 11 表3-1 石墨烯相關回顧性文獻 21 表3-2 石墨烯光電應用領域研究引用最多的前20名論文 23 表4-1 石墨烯光電應用領域研究影響力前20名的學術期刊 28 表4-2 石墨烯光電應用領域研究影響力前20名的作者 29 表4-3 總體主路徑與逐步主路徑比較表 36 表4-4 Top 40關鍵延伸主路徑上的學術論文 46 表4-5 論文依製備方式分類彙整表 48 表4-6 論文引用分析表 51

    Allen MJ, Tung VC and Kaner RB (2010) Honeycomb Carbon: A Review of Graphene. Chemical Reviews 110(1):132-145
    Baird LM and Oppenheim C (1994) Do Citations Matter? Journal of Information Science 20(1):2-15
    Bao QL, Zhang H, Wang Y, Ni ZH, Yan YL, Shen ZX, Loh KP and Tang DY (2009) Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers. Advanced Functional Materials 19(19):3077-3083
    Batagelj V (2003) Efficient algorithms for citation network analysis, University of Ljubljana, Institute of Mathematics, Physics and Mechanics, Preprint series, 41-897
    Batagelj V, Kejžar N, Korenjak-Černe S and Zaveršnik M (2006) Analyzing the structure of U.S. patent network. In Data Science and Classification, Studies in Classification, Data Analysis, and Knowledge Organization, Part III, 141-148
    Batagelj V and Mrvar A (1998) Pajek-Program for large network analysis. Connections 21(2):47-57
    Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z and Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463-470
    Bekkers R and Martinelli A (2012) Knowledge positions in high-tech markets: Trajectories, standards, strategies and true innovators. Technological Forecasting and Social Change 79 (7):1192-1216
    Bhupatiraju S, Nomaler O, Triulzi G, and Verspagen B (2012) Knowledge flows–Analyzing the core literature of innovation, entrepreneurship and science and technology studies. Research Policy 41(7):1205-1218
    Bi H, Huang FQ, Liang J, Xie XM and Jiang MH (2011) Transparent Conductive Graphene Films Synthesized by Ambient Pressure Chemical Vapor Deposition Used as the Front Electrode of CdTe Solar Cells. Advanced Materials 23(28):3202
    Bi H, Huang FQ, Liang J, Xie XM, Tang YF, Lu XJ, Xie XM and Jiang MH (2011) Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells. Journal of Materials Chemistry 21(43):17366-17370
    Blake P, Brimicombe PD, Nair RR., Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK and Novoselov KS (2008) Graphene-based liquid crystal device. Nano Letters 8(6):1704-1708
    Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A and Smalley RE (1997) Single-electron transport in ropes of carbon nanotubes. Science 275(5308):1922-1925
    Bonaccorso F, Sun Z, Hasan T and Ferrari AC (2010) Graphene photonics and optoelectronics. Nature Photonics 4:611-622
    Bornmann L and Daniel HD (2005) Does the h-index for ranking of scientists really work? Scientometrics 65(3):391-392
    Brooks TA (1986) Evidence of complies citer motivations. Journal of the American Society for Information Science 37(1):35
    Brumfiel G (2012) Britain’s big bet on graphene. Nature 488:140-141
    Calero-Medina C and Noyons ECM (2008) Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field. Journal of Informetrics 2(4):272-279
    Carley KM, Hummon NP and Harty M (1993) Scientific Influence: An Analysis of the Main Path Structure in the Journal of Conflict Resolution. Science Communication 14 (4): 417-447
    Chen YB, Liu JS and Lin P (2013) Recent Trend in Graphene for Optoelectronics. Journal of Nanoparticle Research 15(2):1454-1467
    Cho Y, Park S, Jo SJ and Suh S (2012) The landscape of educational technology viewed from the ETRandD journal. British Journal of Educational Technology, doi:10.1111/j.1467-8535.2012.01338.x
    Colicchia C and Strozzi F (2012) Supply chain risk management: a new methodology for a systematic literature review. Supply Chain Management: An International Journal 17(4):403- 418
    David B, Fernando J and Itziar C (2011) Mapping the importance of the real world: The validity of connectivity analysis of patent citations networks. Research Policy 40(3): 473-486
    De S and Coleman JN (2010) Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? ACS Nano 4(5):2713-2720
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen SBT and Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457-460
    Eda G, Fanchini G and Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology 3(5):270-274
    Eda G and Chhowalla M (2010) Chemically Derived Graphene Oxide: Towards
    Large-Area Thin-Film Electronics and Optoelectronics. Advanced Materials 22: 2392-2415
    Egghe L (2006) Theory and practice of the g-index. Scientometrics 69(1):131-152
    Eigler S (2009) A new parameter based on graphene for characterizing transparent conductive materials. Carbon 47(12):2936-2939
    Epicoco M (2012) Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory. Research Policy, in press
    Fontana R, Nuvolari A and Verspagen B (2009) Mapping technological trajectories as patent citation networks: An application to data communication standards. Economics of Innovation and New Technology 18(4):311-336
    Gao X and Guan J (2012) Network model of knowledge diffusion. Scientometrics 90:749-762
    Garfield E (1955) Citation Indexes for Science: A New Dimension in Documentation through Association of Ideas. Science 122(3159):108-111
    Garfield E, Sher IH and Torpie RJ (1964) The use of citation data in writing the history of science. The Institute for Scientific Information, Philadelphia
    Geim AK (2009) Graphene: Status and Prospects. Science 324:1530-1534
    Guan J and Shi Y (2012) Transnational citation, technological diversity and small world in global nanotechnology patenting. Scientometrics, DOI: 10.1007/s11192-012-0706-9
    Gunes F, Shin HJ, Biswas C, Kim ES, Chae SJ, Choi JY and Lee YH (2010) Layer-by-Layer Doping of Few-Layer Graphene Film. ACS Nano 4(8):4595-4600
    Harris JK, Beatty KE, Lecy JD, Cyr JM and Shapiro RM 2nd (2011) Mapping the multidisciplinary field of public health services and systems research. American Journal of Preventive Medicine 41(1):105–111
    Harris JK, Luke DA, Zuckerman RB and Shelton SC (2009) Forty years of secondhand smoke research: the gap between discovery and delivery. American Journal of Preventive Medicine 36(6):538-548
    Hayashi H, Lightcap IV, Tsujimoto M, Takano M, Umeyama T, Kamat PV and Imahori H (2011) Electron Transfer Cascade by Organic/Inorganic Ternary Composites of Porphyrin, Zinc Oxide Nanoparticles, and Reduced Graphene Oxide on a Tin Oxide Electrode that Exhibits Efficient Photocurrent Generation. Journal of the American Chemical Society 133(20):7684-7687
    He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, Huang W, Chen P and Zhang H (2010) Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano 6:3201-3208
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC and Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 3(9):563-568
    Hirsch JE (2005) An index to quantify an individual’s scientific research output. PNAS 102(46):16569-16572
    Ho JC, Saw EC, Lu LYY and Liu JS (2013) Technological Barriers and Research Trends in Fuel Cell Technologies: A Citation Network Analysis. Technological Forecasting and Social Change, accepted
    Hummon NP and Doreain P (1989) Connectivity in a citation network: the development of DNA theory. Social Networks 11(1):39-63
    Hummon NP, Doreian P and Freeman LC (1990) Analyzing the structure of the centrality-productivity literature created between 1948 and 1979. Science Communication 11(4): 459-480
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58
    Jo SJ, Jeung CW, Park S and Yoon HJ (2009) Who is citing whom: Citation network analysis among HRD publications from 1990 to 2007. Human Resource Development Quarterly 20(4):503-537
    Jung I, Dikin DA, Piner RD and Ruoff RS (2008) Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at “Low” Temperatures. Nano Letters 8(12):4283-4287
    Kamat PV (2011) Graphene-Based Nanoassemblies for Energy Conversion. The Journal of Physical Chemistry Letters 2(3):242-251
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY and Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706-710
    Li D, Mueller MB, Gilje S, Kaner RB and Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 3(2):101-105
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L and Ruoff RS (2009) Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324(5932):1312-1314
    Li X, Zhang G, Bai X, Sun X, Wang X, Wang E and Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology 3(9):538-542
    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R.d D, Colombo L and Ruoff RS (2009) Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters 9(12):4359-4363
    Liu JS and Lu LYY (2012) An integrated approach for the main path analysis: the development of the Hirsch index as an example. Journal of the American Society for Information Science and Technology 63(3):528-542
    Liu JS, Lu LYY, Lu WM and Lin BJY (2013) Data Envelopment Analysis 1978-2010: A Citation-based Literature Survey. Omega-The International Journal of Management Science 41(1):3-15
    Liu JS, Lu LYY, Lu WM and Lin BJY (2013) A Survey of DEA Applications. Omega-The International Journal of Management Science 41(5):893-902
    Liu J, Wang YG, Qu ZS, Zheng LH, Su LB and Xu J (2012) Graphene oxide absorber for 2 mu m passive mode-locking Tm:YAlO3 laser. Laser Physics Letters 9(1):15-19
    Lu LYY, Lin BJY, Liu JS and Yu CY (2012) Ethics in Nanotechnology: What’s Being Done? What’s Missing? Journal of Business Ethics 109(4):583-598
    Lu LYY and Liu JS (2013) An Innovative Approach to Identify the Knowledge Diffusion Path: The Case of Resource-based Theory. Scientometrics 94(1):225-246
    Lu LYY and Liu JS (2013) The Knowledge Diffusion Paths of Corporate Social Responsibility – From 1970 to 2011. Corporate Social Responsibility and Environmental Managemen, DOI: 10.1002/csr.1309t
    Lucio-Arias D and Leydesdorff L (2008) Main-path analysis and path-dependent transitions in HistCite-based historiograms. Journal of the American Society for Information Science and Technology 59(12):1948-1962
    Lucio-Arias D and Scharnhorst A (2012) Mathematical approaches to modeling science from an algorithmic-historiography perspective. In Models of Science Dynamics, Understanding Complex Systems, 23-66
    Martinelli A (2012) An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry. Research Policy 41(2): 414-429
    Mina, Ramlogan, Tampubolon and Metcalfe (2007) Mapping evolutionary trajectories: Applications to the growth and transformation of medical knowledge. Research Policy 36: 789–806
    Mingers J (2009) Measuring the research contribution of management academics using the Hirsch-index. Journal of the Operational Research Society 60(9):1143-1153
    Moore S, Haines V, Hawe P and Shiell A (2006) Lost in translation: a genealogy of the “social capital” concept in public health. Journal of Epidemiology and Community Health 60:729-734
    Nair RR et al. (2008) Fine structure constant defines transparency of graphene. Science 320:1308-1308
    Nooy W, Mrvar A, and Batagelj V (2005) Exploratory social network analysis with Pajek, V27, Cambridge University Press, New York
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV and Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666-669
    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV and Geim AK (2005) Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 102:10451-10453
    Popa D, Sun Z, Torrisi F, Hasan T, Wang F and Ferrari AC (2010) Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Applied Physics Letters 97(20):203106
    Popa D, Sun Z, Hasan T, Torrisi F, Wang F and Ferrari AC (2011) Graphene Q-switched, tunable fiber laser. Applied Physics Letters 98(7):073106
    Qi X, Pu KY, Zhou X, Li H, Liu B, Boey F, Huang W and Zhang H (2010) Conjugated-Polyelectrolyte-Functionalized Reduced Graphene Oxide with Excellent Solubility and Stability in Polar Solvents. Small 6(5):663-669
    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS and Kong J (2009) Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters 9(1):30-35
    Saad G (2010) Applying the h-index in exploring bibliometric properties of elite marketing scholars. Scientometrics 83(2):423-433
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST and Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282-286
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST and Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558-1565
    Su Q, Pang SP, Alijani V, Li C, Feng XL and Mullen K (2009) Composites of Graphene with Large Aromatic Molecules. Advanced Materials 21(31):3191
    Sun ZP, Popa D, Hasan T, Torrisi F, Wang FQ, Kelleher EJR, Travers JC and Ferrari AC (2010) A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser. Nano Research 3(9):653-660
    Tampubolon G and Ramlogan R (2007) Networks and temporality in the development of a radical medical treatment. Graduate Journal of Social Science 4(1):54-77
    Tan WD, Su CY, Knize RJ, Xie GQ, Li LJ and Tang DY (2010) Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber. Applied Physics Letters 96(3):031106
    Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ and Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474-477
    Triulzi G (2011) Technological Trajectories and the Role of (Former) Developing Countries’ Firms in the Semiconductor Industry: a Patent Citation Analysis over the last 50 years. DIME Final Conference, 6-8 April 2011, Maastrich
    Verspagen B (2007) Mapping technological trajectories as patent citation networks: a study on the history of fuel cell research. Advances in Complex Systems 10(1):93-115
    Wang Y, Tong SW, Xu XF, Ozyilmaz B and Loh KP (2011) Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for High-Performance Organic Solar Cells. Advanced Materials 23(13):1514-1518
    Wang X, Zhi L and Muellen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters 8(1):323-327
    Wassei JK and Kaner RB (2010) Graphene, a promising transparent conductor. Mater Today 13(3):52-59
    Watcharotone S, Dikin DA, Stankovich S, Piner R, Jung I, Dommett GHB, Evmenenko G, Wu SE, Chen SF, Liu CP, Nguyen SBT and Ruoff RS (2007) Graphene-silica composite thin films as transparent conductors. Nano Letters 7(7):1888-1892
    Wojcik A and Kamat PV (2010) Reduced Graphene Oxide and Porphyrin. An Interactive Affair in 2-D. ACS Nano 4(11): 6697-6706
    Xu JL, Li XL, Wu YZ, Hao XP, He JL and Yang KJ (2011) Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser. Optics Letters 36(10): 1948-1950
    Yin Z, Wu S, Zhou X, Huang X, Zhang Q, Boey F and Zhang H (2010) Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells. Small 6(2):307-312
    Zhang H, Tang DY, Zhao LM, Bao QL and Loh KP (2009) Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Optics Express 17(20):17630-17635
    Zhang H, Tang DY, Knize RJ, Zhao LM, Bao QL and Loh KP (2010) Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Applied Physics Letters 96(11):111112

    QR CODE