簡易檢索 / 詳目顯示

研究生: 莊力文
Li-wen Chuang
論文名稱: 供機器人自我學習的互動認知平台開發
Development of an Interactive Cognition Platform for Robot Self-learning
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 邱士軒
Shih-Hsuan Chiu
郭重顯
Chung-Hsien Kuo
陳金聖
Chin-Sheng Chen
宋開泰
Kai-Tai Song
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 83
中文關鍵詞: 認知機器人累積學習類神經網路
外文關鍵詞: cognitive robotics, Cumulative learning, neural network
相關次數: 點閱:288下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一供機器人自我學習之互動式認知教學平台系統。教導者可以透過此互動式教學平台系統讓機器人進行動作行為與動作名稱的命名和物件名稱的學習,並透過結合已學習之知識來組合成更高階之認知。透過人類互動式教導,機器人可經由語音、視覺與馬達等動作接收環境中資訊來擴增自我認知範疇。經由人類教導基礎認知後,機器人內建之互動式認知系統便能將語音、視覺、馬達動作等所學習到的知識以累積的方式互相連結,自行擴大所學之知識。此外,機器人亦能夠自主地以基礎認知為基準透過認知組合的方式轉換成為新的高階複合認知,最終能夠依照不同種之物件作出相對應之高階動作,自主性地完成任務。


    This thesis presents an interactive learning method to teach a simulated humanoid robot to name actions, objects and to combine this knowledge to acquire higher -order concepts. Through the teaching of human interaction, the robot is enabled to integrate input information of linguistic, visual and sensorimotor actions received from the environment to expand its own knowledge of the world. Following a human tutor’s linguistic instructions, the robot’s cognitive system learns to link linguistic, visual and sensorimotor knowledge altogether by using cumulative method to expand its knowledge. Moreover, the robot is able to autonomously transfer the grounding from basic knowledge to new higher level composite concepts, and execute the corresponding higher level actions on the specific objects.

    中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 序論 1 1.1 研究動機 1 1.2 相關研究文獻回顧 2 1.3 本文內容綱要 4 第二章 機器人硬體機構設計與開發 5 2.1 虛擬機器人規格 5 2.2 ODE物理引擎模擬器 7 2.3 划拳機器人硬體系統機構介紹 8 2.3.1 機械手臂設計構造 9 2.3.2 機電控制系統架構 10 第三章 虛擬機器人認知系統 11 3.1 語音與動作命名模組(Linguistic-Motor naming module, LM) 17 3.2 影像特徵分類模組(Visual-to-Category module, VC) 24 3.3 語言分類模組(Language-to-Category module, LC) 27 3.4 影像特徵與動作模組(Visual-Motor module, VM) 29 第四章 認知系統應用於虛擬機器人之學習結果 32 4.1 語音與動作命名模組(Linguistic-Motor naming module, LM) 32 4.2 影像特徵分類模組(Visual-to-Category Module, VC) 39 4.3 語言分類模組(Language-to-Category Module, LC) 42 4.4 影像特徵與動作模組(Visual-Motor Module, VM) 45 第五章 認知系統應用於划拳機器人之案例 50 5.1 機器人手臂馬達動作學習 50 5.2 手指動作與語音涵義連結 (剪刀、石頭、布) 52 5.3 高階動作教導學習 53 5.4 遊戲輸贏情緒反應回饋 56 5.5 輸贏平手邏輯與語音教導 57 5.6 臉部表情與輸贏反應教導 58 5.7 遊戲輸贏邏輯教導 60 第六章 認知系統應用於划拳機器人之學習結果 62 6.1 機械手臂馬達基礎動作學習 62 6.2 機械手臂馬達基本動作與動作名稱學習 62 6.3 機械手臂高階動作學習 63 6.4 遊戲輸贏邏輯 67 6.5 遊戲輸贏情緒反應測試 68 6.6 遊戲輸贏邏輯 69 第七章 結論與未來展望 71 7.1 結論 71 7.2 未來展望 72 參考文獻 73

    [1] Honda_Asimo_Robot, http://world.honda.com/HDTV/ASIMO/.
    [2] Toyota_Partner_Robot, http://www.toyota-global.com/innovation/partner_robot/
    [3] Metta G., Natale L., Nori F., Sandini G., Vernon D., Fadiga L., von Hofsten C., Rosander K., Santos-Victor J., Bernardino A., and Montesano L. (2010). The iCub Humanoid Robot: An Open-Systems Platform for Research in Cognitive Development. Neural Networks, special issue on Social Cognition: From Babies to Robots. 23(8-9)
    [4] Schaal S. (1999). Is imitation learning the route to humanoid robots?. Trends in Cognitive Sciences, 3(6) : 233-242
    [5] Aude B., Sylvain C., Rudiger D., and Stefan S. (2008). Robot Programming by Demonstration. Handbook of Robotics: MIT Press
    [6] Cangelosi A., Metta G., Sagerer G., Nolfi S., Nehaniv C.L., Fischer K., Tani J., Belpaeme B., Sandini G., Fadiga L., Wrede B., Rohlfing K., Tuci E., Dautenhahn K., Saunders J., and Zeschel A. (2010). Integration of action and language knowledge: A roadmap for developmental robotics. IEEE Transactions on Autonomous Mental Development, 2(3) : 167-195
    [7] Harnad S. (1990). The symbol grounding problem. Physica D, 42: 335-346
    [8] Harnad S. (1993). Grounding symbols in the analog world with neural nets. Think, 2: 12-78
    [9] Cangelosi A. (2010). Grounding language in action and perception: From cognitive agents to humanoid robots. Physics of Life Reviews, 7(2) : 139-151
    [10] Steels L. (2002). Grounding symbols through evolutionary language games. In Cangelosi A, Parisi D (Eds) Simulating the Evolution of Language, London: Springer, (p.211-226)
    [11] Harnad S., Hanson SJ., and Lubin J. (1995). Learned categorical perception in neural nets: Implications for symbol grounding. In Honavar V, Uhr L (Eds) Symbol Processors and Connectionist Network Models in Artificial Intelligence and Cognitive Modeling: Steps toward principled integration. Academic Press (p. 191-206)
    [12] Plunkett K., Sinha C., Moller M., and Strandsry O. (1992). Symbol grounding or the emergence of symbols? Vocabulary grout in children and a connectionist net. Connection Science, 4(3-4): 293-312
    [13] Cangelosi A., Greco A., and Harnad S. (2000). From robotic toil to symbolic theft: Grounding transfer from entry-level to higher-level Categories. Connection Science, 12: 143-162
    [14] Cangelosi A., and Riga T. (2006). An embodied model for sensorimotor grounding and grounding transfer: Experiments with epigenetic robots, Cognitive Science, 30(4): 673-689
    [15] Cangelosi A., and Harnad S. (2000). The adaptive advantage of symbolic theft over sensorimotor toil: Grounding language in perceptual categories. Evolution of Communication, 4: 117-142
    [16] Greco A., Riga T., and Cangelosi A. (2003). The acquisition of new categories through grounded symbols: An extended connectionist model. In O. Kaynak, E. Alpaydin, E. Oja & L. Xu (Eds.), Artificial Neural Networks and Neural Information Processing - ICANN/ICONIP 2003. Berlin: Springer, pp. 773-770
    [17] Cangelosi A., Hourdakis E., and Tikhanoff V. (2006). Language acquisition and symbol grounding transfer with neural networks and cognitive robots. In Proceedings of 2006 IEEE World Congress on Computational Intelligence (IJCNN 2006), IEEE Press, pp. 2885-2891.
    [18] Elman J., Bates E., Johnson M., Karmiloff-Smith A., Parisi D., and Plunkett K. (1996). Rethinking Innateness: A Connectionist Perspective on Development. Cambridge: MIT
    [19] Stramandinoli F., Cangelosi A., and Marocco D. (2011). Towards the grounding of abstract words: A neural network model for cognitive robots. Proceedings of IJCNN-2011 International Joint Conference on Neural Networks, San Jose
    [20] Cangelosi A., and Riga T. (2006). An embodied model for sensorimotor grounding and grounding transfer: Experiments with epigenetic robots. Cognitive Science, 30(4): 673-689
    [21] ODE (Open Dynamics Engine), www.ode.org
    [22] 賴科樺.(2013)."互動遊戲人形化機器手之研發",國立台灣科技大學機械工程系,碩士論文。
    [23] Abbas Q., Ahmad J., and Bangyal W. (2010). Momentum term heals the performance of Back Propagation Algorithm for digit recognition, Emerging Technologies (ICET), 2010 6th International Conference on , vol., no., pp.16,20, 18-19 Oct doi: 10.1109/ICET.2010.5638387
    [24] Lin C.Y., Chuang L.W., Huang C.C., Lin, K.J., and Fahn C.S. (2013). Development of hand posture recognition system for finger gaming robot, Advanced Robotics and Intelligent Systems (ARIS), 2013 International Conference on , vol., no., pp.86,91, May 31 2013-June 2
    [25] Chuang L.W., Lin C.Y., and Cangelosi A. (2012). Learning of Composite Actions and Visual Categories via Grounded Linguistic Instructions: Humanoid Robot Simulations, Proceedings of the WCCI 2012 IEEE World Congress on Computational Intelligence, Brisbane, Australia, June, 10-15

    QR CODE