簡易檢索 / 詳目顯示

研究生: 朱建樺
Chien-Hua Chu
論文名稱: 具有自主導航之機器狗設計與實現
Design and Implementation of an Autonomous Navigation Robot Dog
指導教授: 蘇順豐
Shun-Feng Su
郭重顯
Chung-Hsien Kuo
口試委員: 顏家鈺
Jia-Yush Yen
蔡孟勳
Meng-Shiun Tsai
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 115
中文關鍵詞: 機器狗設計與控制步態規劃動態運動自主導航同步定位與地圖建構
外文關鍵詞: Quadruped Robot Design and Control, Gait Planning, Dynamic Walking, Navigation, SLAM
相關次數: 點閱:306下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究研發一款具有高自由度的12-DOF自主巡檢機器狗,採用馬達驅動足形式類別設計,並在腿部設計上有所創新,本研究將兩顆馬達並排且上下相反放置,並在側面加入一顆馬達,運用兩組四連桿和一個三連桿組成的結構,並使用兩個共同軸心搭配軸承設計,通過軸承之間的空心轉動,實現四組腿步模組都具有3個自由度獨立運行擺動,賦予機器狗具有高度自主性、穩定性和適應性;此外為實現自主導航移動的機器狗,身體內部配置為本研究電路的核心,電路板搭載微型控制(MCU)和其他回饋感測器、電池輸入接口及放電口等;身體上則搭載可攜式小電腦、相機與光學雷達;系統採用分散式架構,使用Ubuntu 18.04的ROS平台進行地圖建置、自動導航、讀取機器人狀態與接收感測器回傳資訊。
    本研究首先對機器狗腿部的運動學進行分析,利用MATLAB對逆向運動學的參數進行模擬,驗證機器狗腿步運動空間和步態(如Walk,Trot)的可行性。為實現機器狗在行走過程中的穩定性,本研究結合多種感測器,進行步態驗證,通過誤差校正後,將行走時的Pitch與Roll的誤差限於2.5°內,確保機器狗的穩定行走。在自主導航方面,結合Hector SLAM和AMCL技術進行地圖上定位,實現機器狗自身位置的精確估計。在確定機器狗的起始點與目標點後,利用預先建立好之地圖,應用Timed-Elastic-Band Local Planner(TEB)演算法進行路徑規劃,通過各項成本的限制不斷修正導航路徑,確保在導航過程中能根據環境變化自動調整路徑。本研究實驗結果顯示,機器狗抵達目標點的誤差皆在8cm合理範圍內,顯示出良好的導航精度。


    In this study, we developed a highly flexible 12-DOF autonomous patrol quadruped robot, adopting an motor-driven leg design with innovative leg structures. Two motors are placed side by side and oppositely oriented, with an additional motor on the side, employing two sets of four-bar linkages and one three-bar linkage structure. Two coaxial bearings are utilized, allowing hollow rotation between the bearings and enabling four leg modules to have three degrees of freedom for independent movement. This design provides the robot with high autonomy, stability, and adaptability. The core of this research is the internal circuitry, which includes a microcontroller unit (MCU), feedback sensors, battery input interface, and discharge ports. The quadruped robot is equipped with a portable NVIDIA Jetson Nano mini-computer, camera, and LIDAR on its body. A distributed architecture is adopted, using Ubuntu 18.04's ROS platform for map building, autonomous navigation, robot status reading, and sensor data reception.
    In this study, we initially conducted an analysis of the kinematics of the robot dog's legs and used MATLAB to simulate the parameters of inverse kinematics, verifying the feasibility of the robot's leg movement space and gaits (such as Walk and Trot). To ensure the stability of the robot during walking, we combined various sensors to validate the gait. After error correction, the Pitch and Roll errors during walking were limited to within 2.5°, ensuring stable walking in different environments. In terms of autonomous navigation, we integrated Hector SLAM and AMCL technologies for map-based positioning, accurately estimating the robot's location. After determining the starting and target points, we used a pre-built map and applied the Timed-Elastic-Band Local Planner (TEB) algorithm for path planning. The navigation path was constantly adjusted based on various cost constraints, ensuring automatic adjustment of the path according to environmental changes during navigation. The experimental results showed that the robot's error in reaching the target point was within a reasonable range of 8cm, demonstrating excellent navigation accuracy.

    指導教授推薦書 i 口試委員審定書 ii 誌謝 iii 摘要 iv Abstract v 圖目錄 x 表目錄 xv 符號說明 xvi 第一章 研究背景與動機 1 1.1研究背景與動機 1 1.2文獻回顧 5 1.2.1機器狗的設計研究 5 1.2.2機器狗控制方法研究 5 1.2.3機器狗定位研究 6 1.2.4機器狗路徑演算法研究 7 1.3系統架構 8 第二章 系統架構 9 2.1系統架構與流程 9 2.1.1 Robot Operating System 機器人作業系統 10 2.1.2 系統運作流程圖 11 2.2機構設計 13 2.2.1機器狗架構 13 2.2.2機器狗身體結構 15 2.2.3機器狗腿部設計 18 2.2.4電路板設計 22 2.2.5硬體設備架構 24 2.2.6機器狗實體組裝 30 第三章 機器狗運動學與步態規劃 31 3.1機器狗運動學引言 31 3.1.1 機器狗腿部逆向運動學 31 3.2步態規劃 36 3.2.1腿部空間運動範圍 37 3.2.2足部軌跡規劃 39 3.3機器狗步行模擬與控制 42 3.3.1機器狗Trot步態模擬 45 3.3.2機器狗Walk步態模擬 46 3.3.3機器狗原地轉向步態 47 3.3.4機器狗爬階梯模擬 49 第四章 機器狗自動導航定位技術 50 4.1同步定位與地圖建構 50 4.2自適應蒙特卡洛定位法 55 4.3機器狗緊急動態避障 57 4.4自動導航Timed-Elastic-Band路徑規劃演算法 59 第五章 實驗結果與分析 64 5.1機器狗IMU驗證分析 64 5.2力感測器用於步態驗證分析 70 5.3跨越障礙物模擬與驗證分析 74 5.4機器狗自主導航 76 5.4.1情境一 78 5.4.2情境二 81 5.4.3情境三 84 5.4.4實驗總結 87 第六章 實驗結論與未來研究工作 90 6.1結論 90 6.2未來研究工作 91 參考文獻 92

    [1]M. Geilinger, R. Poranne, R. Desai, B. Thomaszewski, and S. Coros, "Skaterbots: Optimization-Based Design and Motion Synthesis for Robotic Creatures with Legs and Wheels," ACM Trans. Graph., vol. 37, no. 4, p. Article 160, 2018, doi: 10.1145/3197517.3201368.
    [2]M. Geilinger, S. Winberg, and S. Coros, "A Computational Framework for Designing Skilled Legged-Wheeled Robots," IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3674-3681, 2020, doi: 10.1109/LRA.2020.2978444.
    [3]K. Y. Tseng and P. C. Lin, "Development of Leaping/Flipping Behaviors in a Quadruped Robot with Passive Compliant Legs," in 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 8-12 July 2019 2019, pp. 364-369, doi: 10.1109/AIM.2019.8868419.
    [4]Y. C. Chen, S. T. Ma, L. Y. Hsu, Y. C. Lin, and P. C. Lin, "Design and Implementation of a Quadrupedal Crawling-Rolling Robot," in 2017 International Conference on Advanced Robotics and Intelligent Systems (ARIS), 6-8 Sept. 2017 2017, pp. 6-6, doi: 10.1109/ARIS.2017.8297171.
    [5]P. A. Léziart, T. Flayols, F. Grimminger, N. Mansard, and P. Souères, "Implementation of a Reactive Walking Controller for the New Open-Hardware Quadruped Solo-12," in 2021 IEEE International Conference on Robotics and Automation (ICRA), 30 May-5 June 2021 2021, pp. 5007-5013, doi: 10.1109/ICRA48506.2021.9561559.
    [6]H. Ferrolho, V. Ivan, W. X. Merkt, I. Havoutis, and S. Vijayakumar, "RoLoMa: Robust Loco-Manipulation for Quadruped Robots with Arms," ArXiv, vol. abs/2203.01446, 2022.
    [7]P. Biswal and P. K. Mohanty, "Development of Quadruped Walking Robots: A Review," Ain Shams Engineering Journal, vol. 12, no. 2, pp. 2017-2031, 2021/06/01/ 2021, doi: https://doi.org/10.1016/j.asej.2020.11.005.
    [8]K. S. Aschenbeck, N. I. Kern, R. J. Bachmann, and R. D. Quinn, "Design of a Quadruped Robot Driven by Air Muscles," in The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006., 20-22 Feb. 2006 2006, pp. 875-880, doi: 10.1109/BIOROB.2006.1639201.
    [9]C. Semini, N. G. Tsagarakis, E. Guglielmino, and D. G. Caldwell, "Design and Experimental Evaluation of The Hydraulically Actuated Prototype Leg of The HyQ Robot," in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 18-22 Oct. 2010 2010, pp. 3640-3645, doi: 10.1109/IROS.2010.5651548.
    [10]G. Bledt, M. J. Powell, B. Katz, J. D. Carlo, P. M. Wensing, and S. Kim, "MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1-5 Oct. 2018 2018, pp. 2245-2252, doi: 10.1109/IROS.2018.8593885.
    [11]L. Wang , L. Meng, R. Kang, B. Liu, S. Gu, and Z. Zhang, "Design and Dynamic Locomotion Control of Quadruped Robot with Perception-Less Terrain Adaptation," Cyborg and Bionic Systems, vol. 2022, 2022, doi: 10.34133/2022/9816495.
    [12]D. Zhang, X. Yan, R. Li, and Z. Guo, "Design of an Unconventional Bionic Quadruped Robot with Low-degree-freedom of Movement," in 2021 6th International Conference on Control and Robotics Engineering (ICCRE), 16-18 April 2021 2021, pp. 55-60, doi: 10.1109/ICCRE51898.2021.9435727.
    [13]E. R. Magsino, C. M. L. Ramos, and G. P. Arada, "Development of a Robotic Platform for Quadruped Gait Investigation," in 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 3-7 Dec. 2020 2020, pp. 1-5, doi: 10.1109/HNICEM51456.2020.9400120.
    [14]A. M. El-Dalatony, T. Attia, H. Ragheb, and A. M. Sharaf, "Development, Estimation and Control of a Bio-Inspired Quadruped Robotic Leg," in 2022 13th International Conference on Electrical Engineering (ICEENG), 29-31 March 2022 2022, pp. 57-61, doi: 10.1109/ICEENG49683.2022.9782054.
    [15]B. Ma, Z. Liu, C. Peng, and X. Li, "Trotting Gait Control of Quadruped Robot Based on Trajectory Planning," in 2021 4th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 12-14 Nov. 2021 2021, pp. 105-108, doi: 10.1109/WCMEIM54377.2021.00031.
    [16]T. Dudzik , M. Chignoli, G. Bledt, B. Lim, and A. Mille, "Robust Autonomous Navigation of a Small-Scale Quadruped Robot in Real-World Environments," in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 24 Oct.-24 Jan. 2021 2020, pp. 3664-3671, doi: 10.1109/IROS45743.2020.9340701.
    [17]J. Z. Kolter, K. Youngjun, andA. Y. Ng, "Stereo Vision and Terrain Modeling for Quadruped Robots," in 2009 IEEE International Conference on Robotics and Automation, 12-17 May 2009 2009, pp. 1557-1564, doi: 10.1109/ROBOT.2009.5152795.
    [18]R. Liu , Y. He, C. Yuen, B. P. L. Lau, and R. Ali, W. Fu, "Cost-Effective Mapping of Mobile Robot Based on the Fusion of UWB and Short-Range 2-D LiDAR," IEEE/ASME Transactions on Mechatronics, vol. 27, no. 3, pp. 1321-1331, 2022, doi: 10.1109/TMECH.2021.3087957.
    [19]J. Guo, M. Cheng, J. Ren, and Q. Ren, "A Bio-inspired SLAM System for a Legged Robot," in 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), 16-19 Dec. 2022 2022, pp. 1074-1079, doi: 10.1109/ICIEA54703.2022.10006322.
    [20]M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, ROS: An Open-Source Robot Operating System. 2009.
    [21]N. Yu and B. Zhang, "An Improved Hector SLAM Algorithm Based on Information Fusion for Mobile Robot," in 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), 23-25 Nov. 2018 2018, pp. 279-284, doi: 10.1109/CCIS.2018.8691198.
    [22]J. Wu, X. Ma, T. Peng, and H. Wang, "An Improved Timed Elastic Band (TEB) Algorithm of Autonomous Ground Vehicle (AGV) in Complex Environment," Sensors, vol. 21, no. 24, doi: 10.3390/s21248312.
    [23]D. Lakatos, K. Ploeger, F. Loeffl, D. Seidel, F. Schmidt, T. Gumpert, "Dynamic Locomotion Gaits of a Compliantly Actuated Quadruped With SLIP-Like Articulated Legs Embodied in the Mechanical Design," IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3908-3915, 2018, doi: 10.1109/LRA.2018.2857511.
    [24]N. D. W. Mudalige, I. Zhura, I. Babataev, E. Nazarova, A. Fedoseev, and D. Tsetserukou, "HyperDog: An Open-Source Quadruped Robot Platform Based on ROS2 and micro-ROS," in 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 9-12 Oct. 2022 2022, pp. 436-441, doi: 10.1109/SMC53654.2022.9945526.
    [25]A. A. Saputra and N. Kubota, "Synthesis of Neural Oscillator based Dynamic Rhythmic Generation in Quadruped Robot Locomotion," in 2018 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), 29-30 Oct. 2018 2018, pp. 184-191, doi: 10.1109/KCIC.2018.8628481.
    [26]Y. You , Z. Yang, T. a. Zou, Y. Sui, C. Xu and C. Zhang, "A New Trajectory Tracking Control Method for Fully Electrically Driven Quadruped Robot," Machines, vol. 10, no. 5, doi: 10.3390/machines10050292.
    [27]M. Rojas-Fernández, D. Mújica-Vargas, M. Matuz-Cruz, and D. López-Borreguero, "Performance Comparison of 2D SLAM Techniques Available in ROS Using a Differential Drive Robot," in 2018 International Conference on Electronics, Communications and Computers (CONIELECOMP), 21-23 Feb. 2018 2018, pp. 50-58, doi: 10.1109/CONIELECOMP.2018.8327175.
    [28]K. Krinkin, A. Filatov, A. y. Filatov, A. Huletski, and D. Kartashov, "Evaluation of Modern Laser Based Indoor SLAM Algorithms," in 2018 22nd Conference of Open Innovations Association (FRUCT), 15-18 May 2018 2018, pp. 101-106, doi: 10.23919/FRUCT.2018.8468263.
    [29]S. Nagla, "2D Hector SLAM of Indoor Mobile Robot using 2D Lidar," in 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), 10-11 Dec. 2020 2020, pp. 1-4, doi: 10.1109/ICPECTS49113.2020.9336995.
    [30]X.-Y. Shao, G.-H. Tian, and Y. Zhang, "A 2D Mapping Method Based on Virtual Laser Scans for Indoor Robots," International Journal of Automation and Computing, vol. 18, no. 5, pp. 747-765, 2021/10/01 2021, doi: 10.1007/s11633-021-1304-1.
    [31]M. Wu, C. Cheng, and H. Shang, "2D LIDAR SLAM Based On Gauss-Newton," in 2021 International Conference on Networking Systems of AI (INSAI), 19-20 Nov. 2021 2021, pp. 90-94, doi: 10.1109/INSAI54028.2021.00027.
    [32]P. Marin-Plaza, A. Hussein, D. Martin, and A. d. l. Escalera, "Global and Local Path Planning Study in a ROS-Based Research Platform for Autonomous Vehicles," Journal of Advanced Transportation, vol. 2018, p. 6392697, 2018/02/22 2018, doi: 10.1155/2018/6392697.
    [33]L. Tianyu, Y. Ruixin, W. Guangrui, and S. Lei, "Local Path Planning Algorithm for Blind-guiding Robot Based on Improved DWA Algorithm," in 2019 Chinese Control And Decision Conference (CCDC), 3-5 June 2019 2019, pp. 6169-6173, doi: 10.1109/CCDC.2019.8833259.
    [34]H. Yuan, H. Li, Y. Zhang, S. Du, L. Yu, and X. Wang, "Comparison and Improvement of Local Planners on ROS for Narrow Passages," in 2022 International Conference on High Performance Big Data and Intelligent Systems (HDIS), 10-11 Dec. 2022 2022, pp. 125-130, doi: 10.1109/HDIS56859.2022.9991270.
    [35]T. Bailey and H. Durrant-Whyte, "Simultaneous Localization and Mapping (SLAM): Part II," Robotics & Automation Magazine, IEEE, vol. 13, pp. 108-117, 10/01 2006, doi: 10.1109/MRA.2006.1678144.
    [36]S. Kohlbrecher, O. v. Stryk, J. Meyer, and U. Klingauf, "A Flexible and Scalable SLAM System with Full 3D Motion Estimation," in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, 1-5 Nov. 2011 2011, pp. 155-160, doi: 10.1109/SSRR.2011.6106777.
    [37]C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, "Trajectory Modification Considering Dynamic Constraints of Autonomous Robots," in German Conference on Robotics, 2012.

    無法下載圖示 全文公開日期 2028/07/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE