簡易檢索 / 詳目顯示

研究生: 朱偉銓
WEI - CYUAN JHU
論文名稱: 以量子點敏化材料敏化二氧化鈦奈米柱複合光陽極之太陽能電池研究
The Study of Quantum Dot Sensitized Solar Cell by Titanium Dioxide Composite Photoanode
指導教授: 陳良益
Liang-Yih Chen
口試委員: 吳季珍
Jih-Jen Wu
洪儒生
Lu-Sheng Hong
陳貞夙
Jen-Sue Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 114
中文關鍵詞: 二氧化鈦染料敏化太陽能電池量子點敏化太陽能電池
外文關鍵詞: titanium dioxide, dye sensitized solar cell, quantum dot sensitized solar cell
相關次數: 點閱:458下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近幾年來,使用二氧化鈦材料所製備的染料敏化太陽能電池被廣泛的研究,在整個電池中,二氧化鈦的形態、結構及尺寸皆為影響電池效率的因子。本研究中主要進行一維形態之二氧化鈦奈米柱的製備,並將其應用在染料敏化太陽能電池。成長的方式主要利用水熱法在含氟二氧化錫透明導電玻璃基板上成長出3~4 微米的二氧化鈦奈米柱並依此作為光陽極的結構層,被覆上不同的敏化材料(有機染料分子、量子點)進行光電轉換效率量測以及探討其電子傳輸機制。與使用二氧化鈦奈米顆粒所進行的太陽能電池相比之下,二氧化鈦奈米柱可提供光電子一直接的傳遞途徑,減少光電子在界面間傳遞而造成損失,使電子能更快到達導電玻璃基板,提升電池效率表現;然而,在同樣光陽極厚度下,一維二氧化鈦奈米柱結構所具有的比表面積較小的,為了有效提升此吸附比表面積,故在本研究中,利用四氯化鈦成長二氧化鈦奈米顆粒於二氧化鈦奈米柱表面,以增加敏化材料可吸附的面積,藉以提升光電轉換效率。
在二氧化鈦奈米柱的成長部分,本研究選用不同的鈦前趨物進行成長的探討,由X光繞射分析可知皆為金紅石相結構;而在效率表現上,使用四異丙醇鈦製備的染料敏化型太陽能電池,效率可達2.7%;再添加不同大小的二氧化鈦奈米顆粒,效率可再提升;並於組裝元件前浸泡4-叔丁基吡啶以保護未被覆染料的位置,經過最佳化退火處理,效率最高可達4.1%,此外,藉由調制光電壓/光電流光譜儀與交流阻抗分析,進行電子傳遞特性分析。
利用此結構層製備條件,將N719置換成量子點,並藉由連續離子式吸附與反應法,將硫化鎘、硒化鎘、硫化鋅等量子點被覆至光陽極上。透過不同循環次數控制量子點大小與被覆量。由研究的結果可發現:以二氧化鈦奈米柱/奈米粒子複合結構做為光陽極進行量子點的被覆,其光電轉換值可達2%。


Recently, titanium dioxide (TiO2) nanomaterials as photoanode of dye sensitized solar cells (DSSCs) were widely studied. In the structure of solar cell, the morphologies, structures and sizes of TiO2 are important to affect the efficiency of DSSCs. In this study, one-dimensional TiO2 nanorods prepared by hydrothermal method to be used as photoanode of DSSCs. TiO2 nanorods were grown on fluoride-doped tin oxide transparent conducting glass substrate. The length of TiO2 nanorods was 3~4 m. Various kinds of sensitizers were employed to absorb on TiO2 nanorods and photocurrent conversion efficiency and electron transport mechanism were studied. Comparing TiO2 nanorods photoanode with TiO2 nanoparticles one, TiO2 nanorods provide a directly transport path to reduce the loss of photoelectron in the interfaces to improve the efficiency of DSSCs. However, the absorption amount of dye in TiO2 nanorods is less than that in TiO2 nanoparticles due to lower absorption sites. Therefore, TiO2 nanoparticles were decorated on the surfaces of TiO2 nanorods to be TiO2 nanocomposite photoanode by using titanium tetrachloride as precursor. In this TiO2 nanocomposite photoanode, it can provide more absorption sites for sensitizers to increase photocurrent conversion efficiency.
In this study, different kinds of titanium precursors were used to grow TiO2 nanorods photoanode. By using X-ray diffraction to analyze TiO2 nanorods photoanode, all of them are belong to rutile phase. Considering the efficiency, TiO2 nanorods photoanode fabricated by titanium iso-propoxide can obtain better efficiency, which arrived 2.6%. When TiO2 nanoparticles were decorated on the surfaces of TiO2 nanorods, efficiency can be improved furthermore. When the surfaces of photoanode were treated by 4-tetrabutylpyrride to passivate the un-absorbed sites, the efficiency could arrive 4.1%.
When dye molecules were replaced by quantum dots to sensitize on this type of photoanode by successive ionic layer absorption and reaction method, such as cadmium sulfide, cadmium selenide…, and the efficiency could arrive 2.0% by adjusting the coating cycles.

中文摘要 I ABSTRACT........III 表目錄 ........IX 圖目錄 ........X 第一章、緒論......13 1-1 前言.....13 1-2 二氧化鈦基本性質...14 1-3 研究動機與目的.....17 第二章、理論基礎與文獻回顧...20 2-1 敏化太陽能電池之結構組成與工作原理.... 20 2-1-1敏化太陽能電池之結構組成....... 20 2-1-2 敏化太陽能電池之工作原理...... 24 2-2 成長二氧化鈦一維奈米結構之方法....... 27 2-3 量子點敏化材料.... 31 2-3-1量子侷限效應......... 31 2-3-2衝擊離子化效應與歐傑再結合效應...31 2-4 量子點敏化材料組裝技術.............. 33 2-4-1自組裝單分子膜 (self-assembly monolayer,SAM)..33 2-4-2化學浴沈積法 (chemical bath deposition,CBD)..33 2-4-3連續離子吸附反應法 (successive ion layer adsorption and reaction,SILAR).... 34 2-5 交流阻抗分析原理...36 第三章、實驗方法與步驟...... 44 3-1 實驗流程圖........44 3-2 實驗藥品與設備儀器..45 3-2-1藥品/耗材名稱 ........45 3-2-2實驗設備.... 48 3-2-3分析儀器.... 49 3-3 實驗步驟..55 3-3-1基板清洗.... 55 3-3-2晶種層之製備..55 3-3-3水熱法成長垂直型二氧化鈦奈米柱.. 56 3-3-4合成二氧化鈦奈米顆粒於二氧化鈦奈米柱表面.. 56 3-3-5N719染料於二氧化鈦奈米柱/顆粒的吸附量量測..57 3-3-6以連續離子吸附反應法組裝CdS、CdSe、ZnS.. 57 3-3-7電池組裝.... 58 第四章、結果與討論..60 4-1 垂直型二氧化鈦奈米柱製備與分析...60 4-1-1晶種層對二氧化鈦奈米柱成長之影響..60 4-1-2不同二氧化鈦前趨物對奈米柱成長之影響....65 4-2 奈米粒子/奈米柱光陽極染料敏化型太陽能電池特性分析...70 4-2-1奈米粒子的添加對太陽能電池特性之影響...70 4-2-2tert-butylpyridine處理對載子生命週期與傳遞機制之探討...80 4-2-3退火溫度對太陽能電池特性影響的探討...87 4-3 以連續離子層吸附反應進行量子點被覆垂直型二氧化鈦奈米柱製備與分析...90 4-3-1以串極式被覆法進行量子點敏化層在二氧化鈦奈米柱光陽極表面被覆情形探討...90 4-3-2CdS、CdSe量子點光學特性分析...92 4-3-3退火溫度對太陽能電池特性影響的探討...93 4-3-4tert-butylpyridine處理對電池效率之影響...96 4-3-5不同CdSe層數下量子點電池效能分析...99 4-3-6 奈米粒子/奈米柱光陽極量子點敏化型太陽能電池特性分析...102 第五章、結論...... 106 第六章、參考文獻...106

1. G. Pearson and C. Fuller, Proc. IRE 42, 760 (1954).
2. B. O'Regan and M. Gratzel, Nature 353 (6346), 737 (1991).
3. C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, J.-D. Decoppet, J.-H. Tsai, C. Gratzel, C.-G. Wu, S. M. Zakeeruddin and M. Gratzel, ACS Nano 3 (10), 3103 (2009).
4. E. Sanchez, T. Lopez, R. Gomez, X. Bokhimi, A. Morales and O. Novaro, Journal of Solid State Chemistry 122, 309 (1996).
5. K. Sugiyama and Y. Takeuchi, Zeitschrift fuer Kristallographie 194, 305 (1991).
6. D. Reyes-Coronado and et al., Nanotechnology 19 (14), 145605 (2008).
7. N. G. Park, J. van de Lagemaat and A. J. Frank, The Journal of Physical Chemistry B 104 (38), 8989 (2000).
8. S.-D. Mo and W. Y. Ching, Physical Review B 51 (19), 13023 (1995).
9. Z.-S. Wang, H. Kawauchi, T. Kashima and H. Arakawa, Coordination Chemistry Reviews 248 (13-14), 1381 (2004).
10. M. J. Q. Yong, A. S. W. Wong and G. W. Ho, Materials Chemistry and Physics 116 (2-3), 563 (2009).
11. S. Agarwala and G. W. Ho, Materials Letters 63 (18-19), 1624 (2009).
12. H. Hoda and et al., Nanotechnology 21 (41), 415201 (2010).
13. Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. Kim and W. I. Lee, Advanced Materials 21 (36), 3668 (2009).
14. H. Jha, P. Roy, R. Hahn, I. Paramasivam and P. Schmuki, Electrochemistry Communications 13 (3), 302 (2011).
15. X.-F. Gao, H.-B. Li, W.-T. Sun, Q. Chen, F.-Q. Tang and L.-M. Peng, The Journal of Physical Chemistry C 113 (18), 7531 (2009).
16. O. Seon-Yeong and et al., Physica Scripta 2010 (T139), 014052 (2010).
17. K. Y. Chun, B. W. Park, Y. M. Sung, D. J. Kwak, Y. T. Hyun and M. W. Park, Thin Solid Films 517 (14), 4196 (2009).
18. S. Li, Y. Liu, G. Zhang, X. Zhao and J. Yin, Thin Solid Films In Press, Corrected Proof.
19. W. Yang, F. Wan, Y. Wang and C. Jiang, Applied Physics Letters 95 (13), 133121 (2009).
20. Q. Huang, G. Zhou, L. Fang, L. Hu and Z.-S. Wang, Energy & Environmental Science 4 (6), 2145 (2011).
21. Q. Zhu, J. Chen, M. Xu, S. Tian, H. Pan, J. Qian and X. Zhou, Solid State Sciences 13 (6), 1299 (2011).
22. L. L. Meng, Can, Nanoscience and Nanotechnology Letters 3, 181 (2011).
23. N. Kopidakis, E. A. Schiff, N. G. Park, J. van de Lagemaat and A. J. Frank, The Journal of Physical Chemistry B 104 (16), 3930 (2000).
24. J. van de Lagemaat, N. G. Park and A. J. Frank, The Journal of Physical Chemistry B 104 (9), 2044 (2000).
25. X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A. Grimes, Nano Letters 8 (11), 3781 (2008).
26. N. F. Borrelli, D. Hall, H. Holland and D. Smith, Journal of Applied Physics 61 (12), 5399 (1987).
27. F. C. Anson, K. H. Pool and J. M. Wright, Journal of Electroanalytical Chemistry (1959) 2 (3), 237.
28. M. Chamarro, C. Gourdon, P. Lavallard, O. Lublinskaya and A. I. Ekimov, Physical Review B 53 (3), 1336 (1996).
29. A. J. Nozik, Physica E: Low-dimensional Systems and Nanostructures 14 (1-2), 115 (2002).
30. M. Gratzel, Inorganic Chemistry 44 (20), 6841 (2005).
31. M. Gratzel, Nature 414 (6861), 338 (2001).
32. S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon and Y. E. Sung, Advanced Materials 20 (1), 54 (2008).
33. F. Shao, J. Sun, L. Gao, S. Yang and J. Luo, The Journal of Physical Chemistry C 115 (5), 1819.
34. K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna and S. Uchida, Nanotechnology 18, 365709 (2007).
35. T. Rattanavoravipa, T. Sagawa and S. Yoshikawa, Solar Energy Materials and Solar Cells 92 (11), 1445 (2008).
36. H. W. Wang, C. F. Ting, M. K. Hung, C. H. Chiou, Y. L. Liu, Z. Liu, K. R. Ratinac and S. P. Ringer, Nanotechnology 20, 055601 (2009).
37. J. Shi, C. Sun, M. B. Starr and X. Wang, Nano Letters 11 (2), 624 (2011).
38. E. Ghadiri, N. Taghavinia, S. M. Zakeeruddin, M. Gra tzel and J. E. Moser, Nano Letters 10 (5), 1632 (2010).
39. T.-S. Kang, A. P. Smith, B. E. Taylor and M. F. Durstock, Nano Letters 9 (2), 601 (2009).
40. C. Xue, F. Zhang, S. Chen, Y. Yin and C. Lin, Materials Science in Semiconductor Processing 14, 157 (2011).
41. D. J. Yang, H. Park, S. J. Cho, H. G. Kim and W. Y. Choi, Journal of Physics and Chemistry of Solids 69 (5-6), 1272 (2008).
42. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki and A. B. Walker, Journal of the American Chemical Society 130 (40), 13364 (2008).
43. D. J. Yang, H. G. Kim, S. J. Cho and W. Y. Choi, Materials Letters 62 (4-5), 775 (2008).
44. Y. Hayami, Y. Suzuki, T. Sagawa and S. Yoshikawa, Journal of nanoscience and nanotechnology 10 (4), 2284 (2010).
45. M. Li, Y. Liu, H. Wang, H. Shen, W. Zhao, H. Huang and C. Liang, Journal of Applied Physics 108 (9), 094304 (2010).
46. Y. F. Zhu, R. G. Du, W. Chen, H. Q. Qi and C. J. Lin, Electrochemistry Communications (2010).
47. J. Y. Liao, B. X. Lei, Y. F. Wang, J. M. Liu, C. Y. Su and D. B. Kuang, Chemistry-A European Journal 17 (4), 1352 (2011).
48. Y. Xu, H. Gu, H. Xia and M. Hu, 2011 (unpublished).
49. L. R. F. Allen J. Bard, (2001).
50. B. Liu and E. S. Aydil, Journal of the American Chemical Society 131 (11), 3985 (2009).
51. A. Kumar, A. R. Madaria and C. Zhou, The Journal of Physical Chemistry C 114 (17), 7787 (2010).
52. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science 307 (5709), 538 (2005).
53. A. J. Nozik, Inorganic Chemistry 44 (20), 6893 (2005).
54. J. Hensel, G. Wang, Y. Li and J. Z. Zhang, Nano Letters 10 (2), 478 (2010).
55. Y.-J. Shen and Y.-L. Lee, Nanotechnology 19 (4), 045602 (2008).
56. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, Journal of the American Chemical Society 128 (7), 2385 (2006).
57. M. Kokotov, Y. Feldman, A. Avishai, M. DeGuire and G. Hodes, Thin Solid Films (2011).
58. R. Ortega Borges and D. Lincot, Journal of The Electrochemical Society 140, 3464 (1993).
59. L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt and L. Sun, Journal of the American Chemical Society 133 (22), 8458 (2011).
60. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel and M. K. Nazeeruddin, Nano Letters 9 (12), 4221 (2009).
61. L. W. Chong, H. T. Chien and Y. L. Lee, Journal of Power Sources 195 (15), 5109 (2010).
62. Y. R. Smith and V. Subramanian, The Journal of Physical Chemistry C 115 (16), 8376 (2011).
63. Z. Yang, C.-Y. Chen, C.-W. Liu and H.-T. Chang, Chemical Communications 46 (30), 5485 (2010).
64. Z. Ning, H. Tian, C. Yuan, Y. Fu, H. Qin, L. Sun and H. Agren, Chemical Communications 47 (5), 1536 (2011).
65. V. Gonzalez-Pedro, X. Xu, I. n. Mora-Sero and J. Bisquert, ACS Nano 4 (10), 5783 (2010).
66. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago and A. Compte, Electrochemistry Communications 1 (9), 429 (1999).
67. J. Bisquert, Physical Chemistry Chemical Physics 2 (18), 4185 (2000).
68. A. B. F. Martinson, M. r. S. Goes, F. Fabregat-Santiago, J. Bisquert, M. J. Pellin and J. T. Hupp, The Journal of Physical Chemistry A 113 (16), 4015 (2009).
69. M.-C. Bernard, H. Cachet, P. Falaras, A. H.-L. Goff, N. T. T. Oanh and T. Stergiopoulos, Seattle, WA, USA, 2003 (unpublished).
70. S. Yoon, S. Tak, J. Kim, Y. Jun, K. Kang and J. Park, Building and Environment 46 (10), 1899 (2011).
71. L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, The Journal of Physical Chemistry B 101 (49), 10281 (1997).
72. K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Nano Letters 7 (1), 69 (2006).
73. A. Di Paola, M. Bellardita, R. Ceccato, L. Palmisano and F. Parrino, The Journal of Physical Chemistry C 113 (34), 15166 (2009).
74. P. Xuan and et al., Nanotechnology 22 (23), 235402 (2011).

QR CODE