簡易檢索 / 詳目顯示

研究生: 蓋震宇
Chen-yu Kai
論文名稱: 非線性機械系統之適應控制研究
Adaptive Control of Nonlinear Mechanical Systems
指導教授: 黃安橋
An-Chyau Huang
口試委員: 薛文証
none
黃緒哲
none
黃衍任
none
陳立文
none
蕭俊祥
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 127
中文關鍵詞: 主動式減振適應控制無刷直流馬達線性化機械臂
外文關鍵詞: robot manipulators, adaptive control, active vibration absorber, brushless DC motors, linearization
相關次數: 點閱:295下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文對幾類非線性機械系統提出適應控制器設計之方法。首先,針對機械臂適應控制理論,提出新設計架構。可以免除迴歸矩陣的計算,不用加速度回授,也不須借助Slotine與Li的方法,就可以設計適應控制器。由於此理論結構簡單,可輕易將控制器擴展。因此本文亦將此架構擴展至機械臂阻抗控制與最佳控制問題上。接著,針對機械振動現象,提出主動式減振器。此方法克服了一般減振器只適用於單頻外擾的限制,可以有效的隔離變頻外擾。第三部分,針對電機機械中常見的無刷直流馬達,設計適應控制器。通常控制器設計時為了降低困難度,大多只考慮降階後的模型。為了獲得更好的性能,本文將考慮完整的系統動態,以非降階模型設計控制器。最後,針對機械元件中常出現的rate-dependent非線性特性;其輸入輸出的對應關係隨著系統的輸入頻率不同而改變的非線性特性,本文提出一種新的補償方法,使用回授架構補償非線性特性,將輸入輸出關係線性化。本文所提出的適應控制器,都將以嚴格的數學證明,確保閉迴路穩定性以及內部訊號有界。並以電腦模擬或實驗驗證控制器之性能與可行性。


This dissertation proposes several adaptive control design schemes for special classes of nonlinear mechanical systems. In the first part a new paradigm is proposed to construct a regressor-free adaptive controller for robot manipulators without Slotine and Li’s modification. Similar to the traditional adaptive strategies for robot manipulators, the regressor-free adaptive controller design also requires applying Slotine and Li’s modification to avoid the feedback of joint accelerations. In the new paradigm, the joint acceleration vector is lumped into an unknown time-varying function and the function approximation technique is utilized to cover its effect; therefore, the new paradigm needs neither the regressor matrix nor acceleration feedback. Since the new paradigm can easily be used to design the adaptive controller, it is obviously applicable to other control schemes. Therefore, the same paradigm is going to be applied to compliant motion and optimal control problem. In the second part of this dissertation, vibration suppression control for mechanical systems is considered. Conventional vibration absorber is valid when the external excitation frequency falls into a neighborhood of a specific value. It is not feasible for vibration suppression applications subject to frequency-varying excitations. In this dissertation, an adaptive controller is proposed to learn the disturbance spectrum in real-time so that output vibration suppression can be achieved regardless of the variations in the excitation frequency. In the third part, we consider adaptive controller of brushless DC motors without model reduction. Almost all controllers designed for BLDCM are based on reduced models where a first order dynamics is regarded as the internal model. This way a second order dynamics is considered with considerable simplification in the controller design. Since the reduced model may not reflect the entire dynamics of the motor, some deterioration in the control outcome can be observed. To improve the performance, this dissertation considers the adaptive control of a BLDCM without using reduced model. The last part of this dissertation proposes a new linearization algorithm for rate-dependent nonlinearities. The rate-dependent nonlinearity presents different dynamics in response to variations of the input signal frequency. Both the Jacobian linearization and feedback linearization strategies cannot give proper performance for systems with these nonlinearities. The new linearization algorithm is proposed for rate-dependent nonlinearities where a Fourier series based function approximator in feedback configuration is designed to cover the effect of the nonlinearity such that a desired linearity between the input and output signals can be realized. The proposed strategy is so general that the nonlinearity is allowed to be uncertain. All of these adaptive control schemes, the Lyapunov-like analysis is used to verify the closed loop stability and ensure boundedness of internal signals. Simulation and experimental cases are given to show efficacy of the proposed schemes.

中文摘要........................................................................................................................ I Abstract..........................................................................................................................II 誌謝..............................................................................................................................III 目錄..............................................................................................................................IV 符號說明....................................................................................................................VII 圖片索引.......................................................................................................................X 表格索引...................................................................................................................XIII 第一章 緒論..................................................................................................................1 1.1 機械臂適應控制之新設計架構研究.............................................................2 1.2 用於變動性外力之主動式減振器設計.........................................................2 1.3 非降階無刷直流馬達之適應控制器設計.....................................................5 1.4 適用於rate-dependent非線性特性之線性化補償器設計...........................6 1.5 論文大綱.........................................................................................................6 第二章 機械臂適應控制之新設計架構研究..............................................................7 2.1 機械臂動態模型.............................................................................................9 2.2 傳統機械臂適應控制...................................................................................13 2.2.1 傳統機械臂適應控制........................................................................13 2.2.2 無迴歸矩陣適應控制器設計............................................................17 2.3 新控制器架構...............................................................................................18 2.3.1 控制器設計........................................................................................18 2.3.2 近似誤差對系統穩定性之影響........................................................20 2.4 電腦模擬與實驗結果...................................................................................22 2.4.1 二軸機械臂實驗架構........................................................................22 2.4.2 二軸機械臂電腦模擬結果................................................................23 2.4.3 二軸機械臂實驗結果........................................................................27 2.4.4 六軸機械臂電腦模擬結果................................................................30 第三章 機械臂適應阻抗控制之新設計與驗證........................................................35 3.1 機械臂適應阻抗控制回顧...........................................................................36 3.1.1 傳統機械臂適應阻抗控制................................................................36 3.1.2 無迴歸矩陣適應阻抗控制器設計....................................................39 3.2 控制器設計...................................................................................................41 3.3 電腦模擬與實驗結果...................................................................................43 3.3.1實驗架構.............................................................................................43 3.3.2電腦模擬結果.....................................................................................44 3.3.3實驗結果.............................................................................................48 第四章 機械臂適應控制之LQ最佳化設計.............................................................52 4.1 控制器設計與穩定性分析...........................................................................53 4.2 實驗結果.......................................................................................................55 第五章 用於變動性外力之主動式減振器設計........................................................61 5.1 減振器設計回顧...........................................................................................61 5.1.1 單自由度機械系統............................................................................61 5.1.2 被動減振(Passive).............................................................................62 5.1.3 半主動減振(Semi-Active).................................................................63 5.1.4 主動減振(Active) ..............................................................................64 5.2 主動式減振系統動態模型...........................................................................66 5.2.1 數學模型............................................................................................66 5.2.2 欠軀動系統........................................................................................66 5.2.3 Olfati轉換..........................................................................................67 5.3 控制器設計...................................................................................................68 5.3.1 backstepping-like適應控制器設計...................................................68 5.3.2 穩態性能分析....................................................................................70 5.4 電腦模擬結果...............................................................................................71 5.4.1 振動平臺模型....................................................................................71 5.4.2 電腦模擬結果....................................................................................72 第六章 非降階無刷直流馬達之適應控制器設計....................................................82 6.1 無刷直流馬達數學模型...............................................................................84 6.2 控制器設計...................................................................................................88 6.3 電腦模擬.......................................................................................................90 第七章 適用於Rate-Dependent非線性特性之線性化補償器設計........................98 7.1 補償器設計與應用.....................................................................................100 7.1.1 補償器設計......................................................................................100 7.1.2 補償器在控制系統中的應用..........................................................102 7.2 實驗結果.....................................................................................................103 7.2.1 電磁系統與實驗平臺......................................................................103 7.2.2 rate-dependent磁滯現象.................................................................105 7.2.3 磁滯現象補償..................................................................................105 7.2.4 補償器在控制器統中的應用..........................................................107 第八章 結論..............................................................................................................111 參考文獻....................................................................................................................113 附錄A........................................................................................................................123

1. M. Abe and T. Igusa, “Semi-active dynamic vibration absorbers for controlling transient response,” Journal of Sound and Vibration, vol. 198, no. 5, pp. 547-569, 1996.
2. F. Alonge and F. D'Ippolito, and F. M. Raimondi, “An adaptive control law for robotic manipulator without velocity feedback,” Control Engineering Practice, vol. 11, pp. 999-1005, 2003.
3. W. T. Ang, P. K. Khosla and C. N. Riviere, “Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications,” IEEE/ASME Transactions on Mechatronics, vol. 12, pp. 134-142, 2007.
4. B. Armstrong, O. Khatib, and J. Burdick, “The explicit dynamic model and inertial parameters of the PUMA 560 arm,” Proc. 1986 IEEE International Conference on Robotics and Automation, pp. 510-518, 1986.
5. K. G. Arvanitis, “Design of adaptive LQ regulators for MIMO systems based on multirate sampling of the plant output,’’ Journal of optimization theory and applications, vol. 91, no. 1, pp. 35-60, 1996.
6. B. R. Barmish and G. Leitmann, “On ultimate boundedness control of uncertain systems in the absence of matching assumptions,” IEEE Trans. on Automatic Control AC-27, pp. 153-158, 1982.
7. G. Bertotti, “Dynamic generalization of the scalar Preisach model of hysteresis,” IEEE Transactions on Magnetics, vol. 28, pp. 2599-2601, 1992.
8. B. K. Bose, Power Electronics and AC Drives, Prentice Hall, New Jersey, 1986.
9. M. J. Brennan and J. Dayou, “Global control of vibration using a tunable vibration neutralizer,” Journal of Sound and Vibration, vol. 232, no. 3, pp. 585-600, 2000.
10. R. T. Bupp, D. S. Bernstein, V. S. Chellaboina, and W. M. Haddad, “Resetting virtual absorbers for vibration control,” Journal of Vibration and Control, vol. 6, no. 1, pp. 61-83, 2000.
11. R. A. Burdisso and J. D. Heilmann, “A new dual-reaction mass dynamic vibration absorber actuator for active vibration control,” Journal of Sound and Vibration, vol. 214, no. 5, pp. 817-831, 1998.
12. C. Canudas, K. Astrom, and K. Braun, “Adaptive friction compensation in dc-motor drives,” IEEE Journal of Robotics and Automation, vol. 3, issue 6, pp. 681-685, 1987.
13. N. C. Cheung, K. W. Lim, and M. F. Rahman, “Modelling a linear and limited travel solenoid,” IEEE Proc. Industrial Electronics Society annual general meeting, ECON'93, pp. 1567-1572, Nov. 1993.
14. Y. D. Chen, C. C. Fuh, and P. C. Tung, “Application of voice coil motors in active dynamic vibration absorbers,” IEEE Transactions on Magnetics, vol. 41, no. 3, pp. 1149-1154, 2005.
15. P. C. Chen and A. C. Huang, “Adaptive sliding control of active suspension systems based on function approximation technique,” Journal of Sound and Vibration, vol. 282, issue 3-5, pp. 1119-1135, April 2005a.
16. P. C. Chen and A. C. Huang, “Adaptive multiple-surface sliding control of hydraulic active suspension systems based on function approximation technique,” Journal of Vibration and Control, vol. 11, no. 5, pp. 685-706, 2005b.
17. P. C. Chen and A. C. Huang, “Adaptive sliding control of active suspension systems with uncertain hydraulic actuator dynamics,” Vehicle System Dynamics, vol. 44, no. 5, pp. 357-368, May 2006.
18. Y. F. Chen and A. C. Huang, “Controller design for a class of underactuated mechanical systems,” IET Control Theory and Applications, vol. 6, issue 1, pp. 103-110, 2012.
19. R. Colbaugh, H. Seraji, and K. Glass, “Direct adaptive impedance control of manipulators,” Proc. IEEE Conference on Decision and Control, pp. 2410-2415, 1991.
20. J. J. Craig, P. Hsu, and S. S. Sastry, “Adaptive control of mechanical manipulators,” IEEE International Conference on Robotics and Automation, San Francisco, California, pp.190-195, 1986.
21. M. C. Chien and A. C. Huang, “Adaptive impedance control of robot manipulators based on function approximation technique,” Robotica, vol. 22, issue 4, pp. 395-403, August, 2004.
22. M. C. Chien and A. C. Huang, “Adaptive control of flexible-joint electrically-driven robot with time-varying uncertainties,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 1032-1038, April 2007.
23. M. C. Chien and A. C. Huang, “An adaptive controller design for flexible-joint electrically-driven robots with consideration of time-varying uncertainties,” Chapter 5 in the book Frontiers in Adaptive Control, I-Tech Education and Publishing, Vienna, Austria, 2009.
24. M. C. Chien and A. C. Huang, “A regressor-free adaptive control for flexible-joint robots based on function approximation technique,” Chapter 2 in the book Advances in Robot Manipulators, I-Tech Education and Publishing, Vienna, Austria, 2010a.
25. M. C. Chien and A. C. Huang, “Design of a fat-based adaptive visual servoing for robots with time varying uncertainties,” International Journal of Optomechatronics, vol. 4, issue 2, pp. 93-114, 2010b.
26. M. C. Chien and A. C. Huang, “Adaptive impedance controller design for flexible-joint electrically-driven robots without computation of the regressor matrix,” Robotica, vol. 30, pp. 133-144, 2012.
27. C. L. Davis and G. A. Lesieutre, “An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness,” Journal of Sound and Vibration, vol. 232, no. 3, pp. 601-617, 2000.
28. J. P. Den Hartog, Mechanical Vibrations, 4th Edition, McGraw-Hill, New York, 1956.
29. D. Dimarogonas-Andrew and A. Kollias, “Smart electrorheological fluid dynamic vibration absorber,” Intelligent Structures, Materials, and Vibration, ASME Design Engineering Division, vol. 58, pp. 7-15, 1993.
30. P. Dorato, C. Abdallah, and V. Cerone, Linear-Quadratic Control: An Introduction, Prentice Hall, Englewood Cliffs, New Jersey, 1994.
31. S. J. Dyke, B. F. Spencer, Jr., M. K. Sam and J. D. Carlson, “Modeling and control of magnetorheological dampers for seismic response reduction,” Smart Materials and Structures, vol. 5, pp. 565-575, 1996.
32. D. Filipović and D. Schroder, “Bandpass vibration absorber,” Journal of Sound and Vibration, vol. 214, no. 3, pp. 553-566, 1998.
33. K. C. Falcon, B. J. Stone, W. D. Simcock, and C. Andrew, “Optimization of vibration absorbers: a graphical method for use on idealized systems with restricted damping,” Journal of Mechanical Engineering Science, Vol. 9, pp. 374-381, 1967.
34. H. Frahm, “Device for damping vibrations of bodies,” US Patent No. 989958, 1909.
35. B. Friedland and Y. J. Park, “On adaptive friction compensation,” Transactions on Automatic Control, vol. 37, pp. 1609-1612, 1992.
36. D. Filipovic and D. Schroder, “Vibration absorption with linear active resonators: Continuous and discrete time design and analysis,” Journal of Vibration and Control, vol. 5, no. 5, pp. 685-708, 1999.
37. W. S. Galinaitis and R. C. Rogers, “Control of a hysteretic actuator using inverse hysteresis compensation,” Mathematics and Control in Smart Structures, vol. 3323, pp. 267-277, 1998.
38. P. Ge and M. Jouaneh, “Modeling hysteresis in piezoceramic actuators,” Precision Engineering, vol. 17, pp. 211-221, 1995.
39. P. Ge and M. Jouaneh, “Tracking control of a piezoceramic actuator,” IEEE Transactions on Control Systems Technology, vol. 4, pp. 209-216, 1996.
40. N. Hogan, “Impedance control: An approach to manipulator, Parts I, II, and III,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1-24, 1985.
41. J. Hollkamp and T. Starchville, “A self-tuning piezoelectric vibration absorber,” Journal of Intelligent Material Systems and Structures, vol. 5, pp. 559-566, 1994.
42. M. Hosek, N. Olgac, and H. Elmali, “The centrifugal delayed resonator as a tunable torsional vibration absorber for multi-degree-of-freedom systems,” Journal of Vibration and Control, vol. 5, no. 2, pp. 299-322, 1999.
43. T. C. Hsia, “Adaptive control of robot manipulators – A review,” Proc. IEEE Conference on Robotics and Automation, pp.2502-2508, 1986.
44. T. C. Hsia, T. A. Lasky and Z. Guo, “Robust independent joint controller design for industrial robot manipulators,” IEEE Transactions on Industrial Electronics, vol. 38, pp. 21-25, 1991.
45. P. Hsu, M. Bodson, S. S. Sasiry and B. Paden, “Adaptive identification and control for manipulators without using joint accelerations,” Proc. Intl. Conf. on Robotics and Automation, pp. 1210-1215, 1987.
46. S. Huang and R. Lian, “A dynamic absorber with active vibration control,” Journal of Sound and Vibration, vol. 178, no. 3, pp. 323-335, 1994.
47. A. C. Huang and Y. S. Kuo, “Sliding control of nonlinear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, vol. 74, no. 3, pp. 252-264, 2001.
48. A. C. Huang and Y. C. Chen, “Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties,” IEEE Transactions on Control Systems Technology, vol. 12, no. 5, pp. 770-775, 2004a.
49. A. C. Huang and Y. C. Chen, “Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties,” Automatica, vol. 40, issue 11, pp. 1939-1945, Nov. 2004b.
50. A. C. Huang and K. K. Liao “FAT-based adaptive sliding control for flexible arms, theory and experiments,” Journal of Sound and Vibration, vol. 298, issue 1-2, pp. 194-205, Nov. 2006.
51. A. C. Huang, S. C. Wu, and W. F. Ting, “An FAT-based adaptive controller for robot manipulators without regressor matrix: Theory and Experiments,” Robotica, vol. 24, pp. 205-210, 2006.
52. A. C. Huang and M. C. Chien, Adaptive Control of Robot Manipulators – A Unified Regressor Approach, World Scientific, Singapore, 2010.
53. J. B. Hunt and J. C. Nissen, “Broadband dynamic vibration absorber,” Journal of Sound and Vibration, vol. 83-4, pp. 573-578, 1982.
54. N. Jalili1 and D. W. Knowles IV, “Structural vibration control using an active resonator absorber: modeling and control implementation,” Smart Materials and Structures, vol. 13, pp. 998-1005, 2004.
55. M. Al Janaideh, Chun-Yi Su, and S. Rakheja, “Characterization of rate-dependent hysteresis of magnetostrictive actuators,” Chinese Control and Decision Conference, pp. 5224-5229, 2-4 July 2008.
56. M. Al Janaideh, S. Rakheja, and C-Y. Su, “Modelling rate-dependent symmetric and asymmetric hysteresis loops of smart actuators,” International Journal of Advanced Mechatronic Systems, vol. 1, pp. 32-43, 2008.
57. M. Al Janaideh, S. Rakheja, and C-Y. Su, “Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator,” Mechatronics, vol. 19, pp. 656-670, 2009.
58. A. Isidori, Nonlinear Control Systems, 3rd ed., Springer-Verlag, New York, 1995.
59. T. Jukic and K. Peric, “Model based backlash compensation,” Proc. American Control Conference, pp. 775-780, 2001.
60. C. Y. Kai and A. C. Huang, “Adaptive control of brushless dc motors without model reduction,” Applied Mechanics and Materials, Special Issue on Advances in Mechatronics and Control Engineering, vol. 278-280, pp. 1409-1412, 2013a.
61. C. Y. Kai and A. C. Huang, “Active vibration absorber design for mechanical systems with frequency-varying excitations,” accepted by Journal of Vibration and Control, 2013b.
62. C. Y. Kai and A. C. Huang, “A regressor-free adaptive controller for robot manipulators without Slotine and Li’s modification,” accepted by Robotica, 2013c.
63. C. Y. Kai and A. C. Huang, “Linearization of rate-dependent nonlinearity with a compensator in feedback configuration,” accepted by Mechanical Systems and Signal Processing, 2013d.
64. R. Kelly, “Adaptive computed torque plus compensation control for robot manipulators,” Mechanism and machine theory, vol. 25, no. 2, pp. 161-165, 1990.
65. R. Kelly, R. Carelli, M. Amestegui, and R. Ortega, “An adaptive impedance control of robot manipulators,” Proc. IEEE Conference on Robotics and Automation, pp. 572-557, 1989.
66. H. K. Khalil, Nonlinear Systems, 3rd Edition, Prentice Hall, Upper Saddle River, New Jersey, 2002.
67. K. H. Kim, I. C. Baik, S. K. Chung, and M. J. Youn, “Robust speed control of brushless DC motor using adaptive input-output linearisation technique,” IEE Proceedings In Electric Power Applications, vol. 144, no. 6, pp. 469-475, 1997.
68. J. S. Ko, J. H. Lee, and M. J. Youn, “Robust digital position control of brushless DC motor with adaptive load torque observer,” IEE Proceedings In Electric Power Applications, vol. 141, vo. 2, 1994.
69. J-H. Koo, M. Ahmadian, M. Setareh, and T. Murray, “In search of suitable control methods for semi-active tuned vibration absorbers,” Journal of Vibration and Control, vol. 10, no. 2, pp. 163-174, 2004.
70. P. C. Krause, Analysis of Electric Machinery, McGraw Hill, New York, 1986.
71. T. F. Lee and A. C. Huang, “Vibration suppression in belt-driven servo systems containing uncertain nonlinear dynamics,” Journal of Sound and Vibration, vol. 330, Issue 1, pp.17-26, 2011.
72. F. L. Lewis, Applied Optimal Control and Estimation, Prentice Hall, Englewood Cliffs, New Jersey, 1992.
73. J. Li, H. X. Hua, and R. Y. Shen, “Saturation-based active absorber for a non-linear plant to a principal external excitation,” Mechanical Systems and Signal Processing, vol. 21, pp. 1489-1498, 2007.
74. H. C. Liaw and B. Shirinzadeh, “Neural network motion tracking control of piezo-actuated flexure-based mechanisms for micro-/nanomanipulation,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 5, pp. 517-527, 2009.
75. H. C. Liaw, B. Shirinzadeh, and J. Smith, “Robust neural network motion tracking control of piezoelectric actuation systems for micro/nano manipulation,” IEEE Transactions on Neural Networks, vol. 20, p.356, 2009.
76. W. S. Lu and Q. H. Meng, “Regressor formulation of robot dynamics: computation and application,” IEEE Transactions on Robotics and Automation, vol.9, no.3, pp.323-333, 1993.
77. J. W. Macki, P. Nistri, and P. Zecca, “Mathematical models for hysteresis,” SIAM Review, vol. 35, pp.94-123, 1993.
78. R. Marino and P. Tomei, Nonlinear control design: geometric, adaptive and robust, Prentice Hall, Hertfordshire, 1996.
79. D. Matko, R. Kamnik, and T. Bajd, “Adaptive impedance force control of an industrial manipulator,” Proc. IEEE International Symposium on Industrial Electronics, pp. 129-133, 1999.
80. N. Matsui, T. Makino, and H. Satoh, “Autocompensation of torque ripple of direct drive motor by torque observer,” IEEE Transactions on Industry Applications, vol. 29, no. 1, pp. 187-194, 1993.
81. I. Mayergoyz, “Mathematical models of hysteresis,” IEEE Transactions on Magnetics, vol. 22, issue 5, pp. 603-608, Sep. 1986.
82. R. H. Middleton and G.C. Goodwin, “Adaptive computed torque control for rigid link manipulations,” Systems and Control Letters, vol. 10, pp. 9-16, 1988.
83. H. M. Miller and J. R. Gartner, “Tunable, non-linear vibration absorber,” American Society of Mechanical Engineers Paper, no. 75-DET-9, 1975.
84. R. A. Morgan and K. W. Wang, “Active-passive piezoelectric absorbers for systems under multiple non-stationary harmonic excitations,” Journal of Sound and Vibration, vol. 255, no. 4, pp. 685-700, 2002.
85. K. Nagaya, A. Kurusu, S. Ikai, and Y. Shitani, “Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control,” Journal of Sound and Vibration, vol. 228, no. 4, pp. 773-792, 1999.
86. C. P. Neuman and J. J. Murray, “The complete dynamic model and customized algorithms of the puma robot,” IEEE Transactions on System, Man and Cybernetics, vol. SMC-17, no. 4, pp. 635-644, 1987.
87. M. Nordin, J. Galic, and P. O. Gutman, “New models for backlash and gear play,” International Journal of Adaptive Control and Signal Processing, vol. 11, pp. 49-63, 1997.
88. J. H. Oh and D. S. Bernstein, “Semilinear Duhem model for rate-independent and rate-dependent hysteresis,” IEEE Transactions on Automatic Control, vol. 50, pp. 631-645, 2005.
89. J. Oh, B. Drincic, and D. S. Bernstein, “Nonlinear feedback models of hysteresis,” IEEE Control Systems Magazine, vol. 29, no. 1, pp. 100-119, 2009.
90. R. Olfati-Saber and A. Megretasi, “Controller design for a class of underactuated nonlinear systems,” Proc. of IEEE Conference on Decision and Control, vol. 4, pp. 4182-4187, Dec. 1998.
91. R. Olfati-Saber, “Normal forms for underactuated mechanical systems with symmetry,” IEEE Transactions on Automatic Control, vol. 47, no. 2, pp. 305-308, 2002.
92. N. Olgac, N. Jalili, “Modal analysis of flexible beams with delayed resonator vibration absorber: theory and experiments,” Journal of Sound and Vibration, vol. 218, no. 2, pp. 307-331, 1998.
93. N. Olgac and H. Elmali, “Analysis and design of delayed resonator in discrete domain,” Journal of Vibration and Control, vol. 6, no. 2, pp. 273-289, 2000.
94. N. Olgac and B. Holm-Hansen, “A novel active vibration absorption technique: Delayed resonator,” Journal of Sound and Vibration, vol. 176, pp. 93-104, 1994.
95. J. Ormondroyd and J. P. Den Hartog, “The theory of the dynamic vibration absorber,” ASME Journal of Applied Mechanics, vol. 50, pp. 9-22, 1928.
96. R. Ortega and M. W. Spong, “Adaptive motion control of rigid robots: a tutorial,” Automatica, vol. 25, pp. 877-888, 1989.
97. S. S. Oueini, A. H. Nayfeh, and J. R. Pratt, “A nonlinear vibration absorber for flexible structures,” Nonlinear Dynamics, vol. 15, pp. 259-282, 1998.
98. S. S. Oueini and A. H. Nayfeh, “Analysis and application of a nonlinear vibration absorber,” Journal of Vibration and Control, vol. 6, no. 7, pp. 999-1016, 2000.
99. P. R. Pagilla and M. Tomizuka, “An adaptive output feedback controller for robot arms: stability and experiments,” Automatica, vol. 37, no.7, pp. 983-995, 2001.
100. R. P. Paul, M. Rong, and H. Zhang, “The dynamics of the PUMA manipulator,” Proc. 1983 American Control Conference, San Fransisco, pp. 491-496, 1983.
101. P. Pillay and R. Krishnan, “Modeling of permanent magnet motor drives,” IEEE Transactions on Industrial Electronics, vol. 35, no. 4, pp. 537-541, 1988.
102. B. Le Pioufle, “Comparison of speed nonlinear control strategies for the synchronous servomotor,” Electric Machines and Power Systems, vol. 21, no. 2, pp. 151-169, 1993.
103. L. A. Pipes, “Analysis of a non-linear dynamic vibration absorber,” Journal of Applied Mechanics, vol. 20, pp. 515-518, 1953.
104. M. F. Rahman, N. C. Cheung, and W. L. Khiang, “Position estimation in solenoid actuators,” IEEE Transactions on Industry Applications, vol. 32, pp. 552-559, 1996.
105. M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators”, ASME, Journal of Dynamics Systems, Measurements and Control, vol. 102, pp. 126-133, 1981.
106. R. Rana and T. T. Soong, “Parametric study and simplified design of tuned mass dampers,” Engineering Structures, vol. 20, no. 3, pp. 193-204, 1998.
107. D. A. Recker, P. V. Kokotovic, D. Rhode, and J. Winkelman, “Adaptive nonlinear control of systems containing a dead-zone,” Proc. IEEE Conference on Decision and Control, pp. 2111-2115, 1991.
108. R. E. Roberson, “Synthesis of a non-linear dynamic vibration absorber,” Journal of the Franklin Institute, vol. 254, pp. 205-220, 1952.
109. M. W. Ryan, M. A. Franchek, and R. Bernhard, “Adaptive-passive vibration control of single frequency excitations applied to noise control,” Proceedings of Noise-Con 94, pp. 461-466, 1994.
110. N. Sadegh and R. Horowitz, “Stability and robustness analysis of a class of adaptive controller for robotic manipulators,” International Journal of Robotics Research, vol. 9, no. 3, pp. 74-92, 1990.
111. C. Samson, “An adaptive LQ control for nonminimum phase systems,’’ International Journal of Control, vol. 35, no. 1, pp. 1-28, 1982.
112. S. E. Semercigil, D. Lammers, and Z. Ying, “A new tuned vibration absorber for wide-band excitations,” Journal of Sound and Vibration, vol. 156, no. 3, pp. 445-459, 1992.
113. H. Seraji, “Decentralized adaptive control of manipulators- theory, simulation, and experimentation,” IEEE Transactions on Robotics and Automation, vol. 5, no. 2, pp. 183-201, 1989.
114. J.-J. E. Slotine and W. P. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991.
115. J.-J. E. Slotine and W. P. Li, “On the adaptive control of robot manipulators,” The International Journal of Robotics, vol. 6, no. 3, pp. 49-59, 1987.
116. J. Snowdon, Vibration and Shock in Damped Mechanical Systems, John Wiley and Sons, Inc., New York, 1968.
117. Y. D. Song, “Adaptive motion tracking control of robot manipulators — non-regressor based approach,” International Journal of Control, vol. 63, no. 1, pp. 41-54, 1996.
118. M. W. Spong. Underactuated Mechanical Systems. In B. Siciliano and K. P. Valavanis, editor, Control Problems in Robotics and Automation, Springer-Verlag, London, UK, 1997.
119. M. W. Spong and M. Vidyasagar, Robot Dynamics and Control, John Wiley and Sons, New York, 1989.
120. Y. Stepanenko and J. Yuan, “Robust adaptive control of a class of nonlinear mechanical systems with unbounded and fast-varying uncertainties,” Automatica, vol. 28, no. 2, pp. 265-216, 1992.
121. C. Y. Su and Y. Stepanenko, “Adaptive control for constrained robots without using regressor,” Proc. IEEE International Conference on Robotics and Automation, pp. 264-269, 1996.
122. J. Sun and P. Inannou, “Robust adaptive LQ control schemes,’’ IEEE Transactions on Automatic Control, vol. 37, no. 1, pp. 100-106, 1992.
123. J. Q. Sun, M. R. Jolly, and M. A. Norris, “Passive, adaptive and active tuned vibration absorbers—a survey,” Transactions of American Society of Mechanical Engineers, vol. 117, pp. 234-242, 1995.
124. H. L. Sun, P. Q. Zhang, X. L. Gong, and H. B. Chen, “A novel kind of active resonator absorber and the simulation on its control effort,” Journal of Sound and Vibration, vol. 300, pp. 117-125, 2007.
125. X. Tan and J. S. Baras, “Modeling and control of hysteresis in magnetostrictive actuators,” Automatica, vol. 40, pp. 1469-1480, 2004.
126. U. X. Tan, F. Widjaja, W. T. Latt, K. C. Veluvolu, C. Y. Shee, C. N. Riviere, and W. T. Ang, “Adaptive rate-dependent feedforward controller for hysteretic piezoelectric actuator, Robotics and Automation,” IEEE International Conference on ICRA, pp. 787-792, May 2008.
127. G. Tao and P. V. Kokotovic, “Adaptive control of systems with backlash,” Automatica, vol 29, no. 2, pp. 323-335, 1993.
128. G. Tao, V. Petar, and P. V. Kokotovic, “Adaptive control of plants with unknown dead-zones,” IEEE Transactions on Automatic Control, vol. 39, pp. 59-68, 1994.
129. G. Tao and P. V. Kokotovic, “Adaptive control of systems with unknown output backlash,” IEEE Transactions on Automatic Control, vol. 40, no. 3, pp. 326-330, 1995.
130. G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown hysteresis,” IEEE Transactions on Automatic Control, vol. 40, no. 2, pp. 200-212, 1995.
131. Y. C. Tsai and A. C. Huang, “FAT based adaptive control for pneumatic servo system with mismatched uncertainties,” Mechanical Systems and Signal Processing, vol. 22, no. 6, pp.1263-1273, 2008a.
132. Y. C. Tsai and A. C. Huang, “Multiple-surface sliding controller design for pneumatic servo systems,” Mechatronics, no. 18, pp. 506-512, Nov. 2008b.
133. R. Venkataraman and P. S. Krishnaprasad, “Approximate inversion of hysteresis: Theory and numerical results,” Proc. 39th IEEE Conf. Decision and Control, pp. 4448-4454, 2000.
134. P. L. Walsh and J. S. Lamancusa, “A variable stiffness vibration absorber for minimization of transient vibrations,” Journal of Sound and Vibration, vol. 158, no. 2, pp. 195-211, 1992.
135. X. S. Wang, C. Y. Su, and H. Hong, “Robust adaptive control of a class of nonlinear system with unknown dead zone,” Automatica, vol. 40, pp.407-413, 2004.
136. G. B. Warburton and E. O. Ayorinde, “Optimum absorber parameters for simple systems,” Earthquake Engineering and Structural Dynamics, vol. 8, pp. 197-217, 1980.
137. P. Watts, “On a method of reducing the rolling of ships at sea,” Transactions of the Institution of Naval Architects, vol. 24, pp. 165-190, 1883.
138. K. Wedeward and R. Colbaugh, “New stability results for direct adaptive impedance control,” Proc. IEEE International Symposium, pp. 281-287, 1995.
139. K. Williams, G. Chiu, and R. Bernhard, “Adaptive-passive absorbers using shape-memory alloys,” Journal of Sound and Vibration, vol. 249, no. 5, pp. 835-848, 2002.
140. C. Canudas de Wit, H. Olsson, K. Astrom, and P. Lischinsky, “A new model for control of systems with friction,” IEEE Transactions on Automatic Control, vol. 40, pp. 419- 425, 1995.
141. M. Won and J. K. Hedrick, “Multiple-surface sliding control of a class of uncertain nonlinear systems,” International Journal of Control, vol. 64, pp. 693-706, 1996.
142. S. T. Wu, J. Y. Chen, Y. C. Yeh, and Y. Y. Chiu, “An active vibration absorber for a flexible plate boundary-controlled by a linear motor,” Journal of Sound and Vibration, vol. 300, pp. 250-264, 2007.
143. J. H. Yang, “Adaptive tracking control for manipulators with only position feedback,” Proc. IEEE Conference on Electrical and Computer Engineering, pp.1740-1745, 1999.
144. S. Yu, B. Shirinzadeh, G. Alici, and J. Smith, “Sliding mode control of a piezoelectric actuator with neural network compensating rate-dependent hysteresis,” Proc. IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 3652-3656, April 2005.
145. J. Yuh and J. Nie, “Application of nonregressor-based adaptive control to underwater robots: Experiment,” International Journal of Computers and Electrical Engineering, vol. 26, pp. 169-179, 2000.
146. R. R. Y. Zhen and A. A. Goldenberg, “An adaptive approach to constrained robot motion control,” Proc. IEEE Conference on Robotics and Automation, pp. 1833-1838, 1995.
147. J. Zhou, C. Wen, and Y. Zhang, “Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity,” IEEE Transactions on Automatic Control, vol. 51, pp. 504-511, 2006.

QR CODE