簡易檢索 / 詳目顯示

研究生: 蔡淳宇
Chun-Yu Tsai
論文名稱: 纖維素奈米晶體表面接枝烷基鏈對其疏水性與抗菌性能之影響
The Effect of Grafting Alkyl Chains onto Surface of Cellulose Nanocrystals on Its Hydrophobicity and Antimicrobial Ability
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 何明樺
Ming-Hua Ho
蕭偉文
Wei-Wen Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 112
中文關鍵詞: 纖維素奈米晶體單寧酸多功能之表面修飾纖維素奈米晶體希夫氏鹼反應邁克爾加成反應
外文關鍵詞: Cellulose Nanocrystals, Tannic Acid, Multifunctional Surface-Modified Cellulose Nanocrystals, Schiff Base Reaction, Michael Addition Reaction
相關次數: 點閱:279下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,纖維素奈米晶體 (Cellulose nanocrystals, CNC) 因其表面具有豐富的羥基可供衍生修飾,且具有極高的比表面積,因此已被廣泛應用成為一種可持續之生物奈米材料,一般對CNC進行表面修飾的步驟十分繁瑣,因此本論文提出了一種簡便、低成本且環保之方式,製備出具有疏水與抗菌性能之CNC。首先利用單寧酸易於在物體表面形成塗覆之特性,將其塗覆於CNC表面形成CNC@TA,接著通過希夫氏鹼與邁克爾加成反應接枝上不同碳鏈數之長碳鏈胺基,分別為10個碳之 CNC@TA-DA、12個碳之CNC@TA-DDA與16個碳之CNC@TA-HDA,此外也利用水解與縮合反應將含18個碳鏈之季銨鹽類接枝於CNC@TA上,成為CNC@TA-DMOAP。以光散射分析(DLS)結果顯示CNC與CNC@TA皆可均勻分散於水中,CNC@TA-DA、CNC@TA-DDA與CNC@TA-HDA則較易分散於酒精中,而CNC-TA-DMOAP兩種溶劑皆可分散。以TEM觀察可確認當CNC經單寧酸表面塗覆與接枝長碳鏈後均能夠維持其針狀結構。將各個表面修飾後的樣品塗覆於纖維素濾紙上時,皆能產生非常緻密且均勻之塗層,在相同塗覆量下以水接觸角量測其親疏水性,發現CNC@TA-HDA為最疏水之樣品。CNC@TA、CNC@TA-DA與CNC@TA-DDA對大腸桿菌與金黃色葡萄球菌皆會產生抑菌環寬,再以接觸式與懸浮式殺菌分析,可確認CNC@TA-DA與CNC@TA-DDA具有最強之抗菌效果,抗菌能力並不隨著碳鏈增長而增加,碳鏈長度於10 ~ 12時可獲得最佳抗菌效果。而塗覆單寧酸並接枝長碳鏈後之樣品均具有抗氧化能力。利用L929細胞證實所有樣品均無細胞毒性。而最親油之CNC@TA-HDA則可應用於表面疏水修飾上,可成功應用於油水分離。利用簡單的單寧酸表面塗層步驟及一鍋式反應,我們成功製備出具有疏水特性、抗菌能力、抗氧化性與生物相容性之CNC,開拓纖維素奈米晶體更廣泛的用途。


    In recent years, cellulose nanocrystals (CNC) have been widely used as a sustainable nanomaterial due to its abundant hydroxyl groups available for derivatization and exceptionally high specific surface area. In general, the surface modification of CNC involves a complex process. In this work, we proposed a facile, low-cost, and environmentally friendly approach for transforming hydrophilic CNC into hydrophobic and antimicrobial CNC. By taking advantage of the propensity of tannic acid to form coating on various substrates surfaces, CNC was easily coated by tannic acid as CNC@TA. Subsequently, different carbon chain lengths of alkyl amine were grafted onto CNC@TA through Schiff's base and Michael addition reactions. CNC@TA-DA (with 10-carbon), CNC@TA-DDA (with 12-carbon), and CNC@TA-HDA (with 16-carbon) were obtained. In addition, a quaternary ammonium salt with 18-carbon chain length was also grafted onto CNC@TA to obtain CNC@TA-DMOAP. Both CNC and CNC@TA were well dispersed in aqueous solution based on dynamic light scattering (DLS) measurement. However, the CNC modified with alkyl chains such as CNC@TA-DA, CNC@TA-DDA, and CNC@TA-HDA are more prone to be dispersed in alcohol. CNC@TA-DMOAP demonstrates good dispersion in both water and alcohol. TEM observations confirmed that CNC@TA and after grafting long carbon chains could maintain their needle-like structure. All the samples could be well-coated onto cellulose filter paper to form a very dense and uniform layer. CNC@TA-HDA exhibits the highest hydrophobicity among all the samples. CNC@TA, CNC@TA-DA and CNC@TA-DDA all exhibit antimicrobial activity against E. coli and S. aureus, as evidenced by the formation of inhibition diffusion zones. The carbon chain length grafted onto CNC in the range of 10 to 12 showed the best antimicrobial activity. The CNC@TA samples grafted with long carbon chains all exhibited antioxidant ability and low cellular toxicity as confirmed by using L929 cells. The highly hydrophobic CNC@TA-HDA was successfully applied for surface hydrophobic modification, specifically, for oil-water separation applications.

    摘要 I Abstract II 致謝 IV 目錄 V 圖索引 IX 表索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的與內容 4 第二章 文獻回顧 6 2.1 纖維素奈米晶體 (Cellulose nanocrystals, CNC) 6 2.1.1 纖維素 6 2.1.2 纖維素奈米晶體 7 2.2 單寧酸 (Tannic acid, TA) 12 2.3 希夫氏鹼與邁克爾加成反應 15 2.3.1. 希夫氏鹼反應 15 2.3.2. 邁克爾加成反應 15 2.4 季銨鹽類 (Quaternary ammonium salts, QAS) 18 第三章 實驗方法、流程與材料 21 3.1 實驗流程 21 3.2 實驗材料與設備 23 3.2.1 菌種與細胞 23 3.2.2 實驗藥品 23 3.2.3 實驗儀器與設備 24 3.3 溶液配置 25 3.3.1 1 w/v % 樣品之酒精懸浮液 25 3.3.2 1,1-二苯-2-三硝苯肼 (DPPH) 甲醇溶液 25 3.3.3 LB培養基 (LB medium) 25 3.3.4 TSB培養基 (TSB medium) 26 3.3.5 PBS緩衝溶液 (pH=7.4) 26 3.4 表面修飾之纖維素奈米晶體樣品製備 27 3.4.1 纖維素奈米晶體@單寧酸 (CNC@TA) 27 3.4.2 纖維素奈米晶體@單寧酸 – 癸胺 (CNC@TA-DA) 27 3.4.3 纖維素奈米晶體@單寧酸 – 十二胺 (CNC@TA-DDA) 28 3.4.4 纖維素奈米晶體@單寧酸 – 十六胺 (CNC@TA-HDA) 28 3.4.5 纖維素奈米晶體@單寧酸 – 二甲基十八烷基[3-(三甲氧基矽基)丙基]氯化銨 (CNC@TA-DMOAP) 29 3.5 材料性質分析 30 3.5.1 傅立葉轉換紅外線光譜分析儀 (FTIR) 30 3.5.2 X光繞射分析 (XRD) 30 3.5.3 動態光散射儀分析 (DLS) 31 3.5.4 界達電位分析 (Zeta potential) 31 3.5.5 穿透式電子顯微鏡 (TEM) 31 3.5.6 掃描式電子顯微鏡 (SEM) 31 3.5.7 接觸角測試 (Water contact angle) 32 3.6 抗菌測試及分析 33 3.6.1 抑菌環寬 (Zone of Inhibition) 33 3.6.2 接觸式殺菌測試 (CFU) 34 3.6.3 懸浮式殺菌測試 (CFU) 36 3.6.4 統計分析 (Statistical analysis) 37 3.6.5 細菌生長曲線 (Growth curve) 38 3.7 抗氧化能力測試 (DPPH) 39 3.8 生物相容性檢測方式與操作 (L929細胞) 39 第四章 結果與討論 40 4.1 表面修飾纖維素奈米晶體 40 4.1.1 修飾方式 40 4.1.2 傅立葉轉換紅外線光譜 (FTIR) 分析 43 4.1.3 X光繞射 (XRD) 分析 45 4.2 表面修飾纖維素奈米晶體之分散性與表面性質 47 4.2.1 動態光散射 (DLS) 分析 47 4.2.2 水/油相之分散性 49 4.2.3 界達電位 (Zeta potential) 分析 52 4.3 纖維素奈米晶體表面修飾後之型態 53 4.4 表面修飾纖維素奈米晶體塗覆於濾紙之型態與特性 55 4.4.1 場發射掃描式電子顯微鏡 (FE-SEM) 觀察 55 4.4.2 水接觸角量測 (Water contact angle, WCA) 59 4.5 表面修飾纖維素奈米晶體之抗菌性能 61 4.5.1 抑菌環寬 (Zone of inhibition) 61 4.5.2 接觸式殺菌測試 63 4.5.3 懸浮式殺菌測試 67 4.5.4 以細菌生長曲線 (Growth curve) 測試抑菌能力 72 4.6 抗氧化能力測試 (DPPH) 74 4.7 生物相容性 (L929) 77 4.8 CNC@TA-HDA應用於疏水領域 79 4.8.1 油水分離領域 79 4.8.2 Janus紙 80 第五章 結論 81 第六章 補充資料 83 參考文獻 86

    Afrin, S., & Karim, Z. (2017). Isolation and Surface Modification of Nanocellulose: Necessity of Enzymes over Chemicals. ChemBioEng Reviews, 4(5), 289–303. https://doi.org/10.1002/CBEN.201600001
    Ahmad, T. (2014). Reviewing the tannic acid mediated synthesis of metal nanoparticles. Journal of Nanotechnology, 2014. https://doi.org/10.1155/2014/954206
    Akhlaghi, S. P., Berry, R. C., & Tam, K. C. (2013). Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose, 20(4), 1747–1764. https://doi.org/10.1007/S10570-013-9954-Y/FIGURES/8
    Anglès, M. N., & Dufresne, A. (2001). Plasticized starch/tunicin whiskers nanocomposite materials. 2: Mechanical behavior. Macromolecules, 34(9), 2921–2931. https://doi.org/10.1021/MA001555H/ASSET/IMAGES/LARGE/MA001555HF00007.JPEG
    Araki, J., Wada, M., Kuga, S., & Okano, T. (1998). Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142(1), 75–82. https://doi.org/10.1016/S0927-7757(98)00404-X
    Arellano, H., Nardello-Rataj, V., Szunerits, S., Boukherroub, R., & Fameau, A.-L. (2023). Saturated long chain fatty acids as possible natural alternative antibacterial agents: Opportunities and challenges. Advances in Colloid and Interface Science, 318, 102952. https://doi.org/10.1016/J.CIS.2023.102952
    Arof, A. K., Mat Nor, N. A., Aziz, N., Kufian, M. Z., Abdulaziz, A. A., & Mamatkarimov, O. O. (2019). Investigation on morphology of composite poly(ethylene oxide)-cellulose nanofibers. Materials Today: Proceedings, 17, 388–393. https://doi.org/10.1016/J.MATPR.2019.06.265
    Ayfer, B., Dizman, B., Elasri, M. O., Mathias, L. J., & Avci, D. (2012). Synthesis and antibacterial activities of new quaternary ammonium monomers. Http://Dx.Doi.Org/10.1163/1568555054937935, 8(5), 437–451. https://doi.org/10.1163/1568555054937935
    Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870. https://doi.org/10.1021/NL052326H/ASSET/IMAGES/LARGE/NL052326HH00001.JPEG
    Buffet-Bataillon, S., Tattevin, P., Bonnaure-Mallet, M., & Jolivet-Gougeon, A. (2012). Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. International Journal of Antimicrobial Agents, 39(5), 381–389. https://doi.org/10.1016/J.IJANTIMICAG.2012.01.011
    Bureš, F. (2019). Quaternary Ammonium Compounds: Simple in Structure, Complex in Application. Topics in Current Chemistry, 377(3), 1–21. https://doi.org/10.1007/S41061-019-0239-2/FIGURES/8
    Chen, Y., Gan, L., Huang, J., & Dufresne, A. (2019). Reinforcing Mechanism of Cellulose Nanocrystals in Nanocomposites. Nanocellulose: From Fundamentals to Advanced Materials, 201–249. https://doi.org/10.1002/9783527807437.CH7
    Cheng, Y., Ou, X., Ma, J., Sun, L., & Ma, Z. H. (2019). A New Amphiphilic Brønsted Acid as Catalyst for the Friedel–Crafts Reactions of Indoles in Water. European Journal of Organic Chemistry, 2019(1), 66–72. https://doi.org/10.1002/EJOC.201801612
    Coulibaly, S., Roulin, A., Balog, S., Biyani, M. V., Foster, E. J., Rowan, S. J., Fiore, G. L., & Weder, C. (2014). Reinforcement of optically healable supramolecular polymers with cellulose nanocrystals. Macromolecules, 47(1), 152–160. https://doi.org/10.1021/MA402143C/SUPPL_FILE/MA402143C_SI_001.PDF
    Cusola, O., Valls, C., Vidal, T., Tzanov, T., & Roncero, M. B. (2015). Electrochemical Insights on the Hydrophobicity of Cellulose Substrates Imparted by Enzymatically Oxidized Gallates with Increasing Alkyl Chain Length. ACS Applied Materials and Interfaces, 7(25), 13834–13841. https://doi.org/10.1021/ACSAMI.5B01904/ASSET/IMAGES/LARGE/AM-2015-01904P_0002.JPEG
    Davies, S. G., & McCarthy, T. D. (1995). An asymmetric synthesis of N-protected β-amino aldehydes and β-amino ketones. Synlett, 1995(7), 700–702. https://doi.org/10.1055/S-1995-5059/BIB
    De Souza Lima, M. M., Wong, J. T., Paillet, M., Borsali, R., & Pecora, R. (2003). Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir, 19(1), 24–29. https://doi.org/10.1021/LA020475Z/ASSET/IMAGES/MEDIUM/LA020475ZE00014.GIF
    Dong, C., Wang, Z., Wu, J., Wang, Y., Wang, J., & Wang, S. (2017). A green strategy to immobilize silver nanoparticles onto reverse osmosis membrane for enhanced anti-biofouling property. Desalination, 401, 32–41. https://doi.org/10.1016/J.DESAL.2016.06.034
    Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J. L., Heux, L., Dubreuil, F., & Rochas, C. (2008). The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9(1), 57–65. https://doi.org/10.1021/BM700769P/SUPPL_FILE/BM700769P-FILE003.PDF
    Eyley, S., & Thielemans, W. (2014). Surface modification of cellulose nanocrystals. https://doi.org/10.1039/c4nr01756k
    Garcia de Rodriguez, N. L., Thielemans, W., & Dufresne, A. (2006). Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose, 13(3), 261–270. https://doi.org/10.1007/S10570-005-9039-7/METRICS
    George, J., & Sabapathi, S. N. (2015). Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, Science and Applications, 8, 45–54. https://doi.org/10.2147/NSA.S64386
    Gîfu, I. C., Maxim, M. E., Cinteza, L. O., Popa, M., Aricov, L., Leonties, A. R., Anastasescu, M., Anghel, D. F., Ianchis, R., Ninciuleanu, C. M., Burlacu, S. G., Nistor, C. L., & Petcu, C. (2019). Antimicrobial Activities of Hydrophobically Modified Poly(Acrylate) Films and Their Complexes with Different Chain Length Cationic Surfactants. Coatings 2019, Vol. 9, Page 244, 9(4), 244. https://doi.org/10.3390/COATINGS9040244
    Gülçin, I., Huyut, Z., Elmastaş, M., & Aboul-Enein, H. Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian Journal of Chemistry, 3(1), 43–53. https://doi.org/10.1016/J.ARABJC.2009.12.008
    Guo, J., Richardson, J. J., Besford, Q. A., Christofferson, A. J., Dai, Y., Ong, C. W., Tardy, B. L., Liang, K., Choi, G. H., Cui, J., Yoo, P. J., Yarovsky, I., & Caruso, F. (2017). Influence of Ionic Strength on the Deposition of Metal-Phenolic Networks. Langmuir, 33(40), 10616–10622. https://doi.org/10.1021/ACS.LANGMUIR.7B02692/ASSET/IMAGES/LARGE/LA-2017-026926_0006.JPEG
    Habibi, Y., Goffin, A. L., Schiltz, N., Duquesne, E., Dubois, P., & Dufresne, A. (2008). Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. Journal of Materials Chemistry, 18(41), 5002–5010. https://doi.org/10.1039/B809212E
    Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500. https://doi.org/10.1021/CR900339W/ASSET/IMAGES/MEDIUM/CR-2009-00339W_0022.GIF
    Haldar, J., Kondaiah, P., & Bhattacharya, S. (2005). Synthesis and antibacterial properties of novel hydrolyzable cationic amphiphiles. Incorporation of multiple head groups leads to impressive antibacterial activity. Journal of Medicinal Chemistry, 48(11), 3823–3831. https://doi.org/10.1021/JM049106L/ASSET/IMAGES/LARGE/JM049106LF00005.JPEG
    Hemraz, U. D., Lam, E., & Sunasee, R. (2023). Recent advances in cellulose nanocrystals-based antimicrobial agents. Carbohydrate Polymers, 315, 120987. https://doi.org/10.1016/J.CARBPOL.2023.120987
    Hu, Z., Berry, R. M., Pelton, R., & Cranston, E. D. (2017). One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols. ACS Sustainable Chemistry and Engineering, 5(6), 5018–5026. https://doi.org/10.1021/ACSSUSCHEMENG.7B00415/ASSET/IMAGES/LARGE/SC-2017-00415M_0007.JPEG
    Huang, J., Ma, X., Yang, G., & Alain, D. (2019). Introduction to Nanocellulose. Nanocellulose: From Fundamentals to Advanced Materials, 1–20. https://doi.org/10.1002/9783527807437.CH1
    Imazato, S., Ma, S., Chen, J. H., & Xu, H. H. K. (2014). Therapeutic polymers for dental adhesives: Loading resins with bio-active components. Dental Materials, 30(1), 97–104. https://doi.org/10.1016/J.DENTAL.2013.06.003
    Jia, Z., Shen, D., & Xu, W. (2001a). Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydrate Research, 333(1), 1–6. https://doi.org/10.1016/S0008-6215(01)00112-4
    Jia, Z., Shen, D., & Xu, W. (2001b). Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydrate Research, 333(1), 1–6. https://doi.org/10.1016/S0008-6215(01)00112-4
    Jiang, S., Wang, L., Yu, H., Chen, Y., & Shi, Q. (2006). Study on antibacterial behavior of insoluble quaternary ammonium. Journal of Applied Polymer Science, 99(5), 2389–2394. https://doi.org/10.1002/APP.22810
    Jonas, R., & Farah, L. F. (1998). Production and application of microbial cellulose. Polymer Degradation and Stability, 59(1–3), 101–106. https://doi.org/10.1016/S0141-3910(97)00197-3
    Joondan, N., Jhaumeer-Laulloo, S., & Caumul, P. (2014). A study of the antibacterial activity of l-Phenylalanine and l-Tyrosine esters in relation to their CMCs and their interactions with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC as model membrane. Microbiological Research, 169(9–10), 675–685. https://doi.org/10.1016/J.MICRES.2014.02.010
    Kim, B. J., Lee, J. K., & Choi, I. S. (2019). Iron gall ink revisited: hierarchical formation of Fe(III)–tannic acid coacervate particles in microdroplets for protein condensation. Chemical Communications, 55(15), 2142–2145. https://doi.org/10.1039/C8CC09507H
    Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, A. (2011). Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50(24), 5438–5466. https://doi.org/10.1002/ANIE.201001273
    Koshizawa, T. (1960). Degradation of Wood Cellulose and Cotton Linters in Phosphoric Acid. JAPAN TAPPI JOURNAL, 14(7), 455-458,475. https://doi.org/10.2524/JTAPPIJ.14.455
    Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849), 426–430. https://doi.org/10.1126/SCIENCE.1147241/SUPPL_FILE/LEE.SOM.PDF
    Lin, Q., Wu, L., Hu, W., Wan, X., Wu, Z., & Zhang, C. (2022). Antifouling and antimicrobial modification of polyvinylidene fluoride micropore membrane by plant tannic acid and polyhexamethylene guanidine. Surfaces and Interfaces, 29, 101708. https://doi.org/10.1016/J.SURFIN.2021.101708
    Majdoub, M., Essamlali, Y., Amadine, O., Ganetri, I., Hafnaoui, A., Khouloud, M., & Zahouily, M. (2021). Octadecylamine as chemical modifier for tuned hydrophobicity of surface modified cellulose: toward organophilic cellulose nanocrystals. Cellulose, 28(12), 7717–7734. https://doi.org/10.1007/S10570-021-04044-W/TABLES/3
    Makvandi, P., Jamaledin, R., Jabbari, M., Nikfarjam, N., & Borzacchiello, A. (2018). Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dental Materials, 34(6), 851–867. https://doi.org/10.1016/J.DENTAL.2018.03.014
    Matos Ruiz, M., Cavaillé, J. Y., Dufresne, A., Gèrard, J. F., & Graillat, C. (2012). Processing and characterization of new thermoset nanocomposites based on cellulose whiskers. Http://Dx.Doi.Org.Ezproxy.Lib.Ntust.Edu.Tw/10.1163/156855400300184271, 7(2), 117–131. https://doi.org/10.1163/156855400300184271
    Michailidis, M., Sorzabal-Bellido, I., Adamidou, E. A., Diaz-Fernandez, Y. A., Aveyard, J., Wengier, R., Grigoriev, D., Raval, R., Benayahu, Y., D’Sa, R. A., & Shchukin, D. (2017). Modified Mesoporous Silica Nanoparticles with a Dual Synergetic Antibacterial Effect. ACS Applied Materials and Interfaces, 9(44), 38364–38372. https://doi.org/10.1021/ACSAMI.7B14642/ASSET/IMAGES/LARGE/AM-2017-146425_0008.JPEG
    Mikláš, R., Miklášová, N., Bukovský, M., Horváth, B., Kubincová, J., & Devínsky, F. (2014). Synthesis, surface and antimicrobial properties of some quaternary ammonium homochiral camphor sulfonamides. European Journal of Pharmaceutical Sciences, 65, 29–37. https://doi.org/10.1016/J.EJPS.2014.08.013
    Miler, A. F., & Donald, A. M. (2003). Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy. Biomacromolecules, 4(3), 510–517. https://doi.org/10.1021/BM0200837/ASSET/IMAGES/LARGE/BM0200837F00012.JPEG
    Miriam de Souza Lima, M., & Borsali, R. (2002). Static and dynamic light scattering from polyelectrolyte microcrystal cellulose. Langmuir, 18(4), 992–996. https://doi.org/10.1021/LA0105127/ASSET/IMAGES/LARGE/LA0105127F00009.JPEG
    Moohan, J., Stewart, S. A., Espinosa, E., Rosal, A., Rodríguez, A., Larrañeta, E., Donnelly, R. F., & Domínguez-Robles, J. (2019). Cellulose Nanofibers and Other Biopolymers for Biomedical Applications. A Review. Applied Sciences 2020, Vol. 10, Page 65, 10(1), 65. https://doi.org/10.3390/APP10010065
    Morandi, G., Heath, L., & Thielemans, W. (2009). Cellulose nanocrystals grafted with polystyrene chains through Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). Langmuir, 25(14), 8280–8286. https://doi.org/10.1021/LA900452A/SUPPL_FILE/LA900452A_SI_001.PDF
    Mu, X., Gu, Y., Wang, P., Shi, J., Wei, A., Tian, Y., Zhou, J., Chen, Y., Zhang, J., Sun, Z., Liu, J., Peng, B., & Miao, L. (2020). Energy Matching for Boosting Water Evaporation in Direct Solar Steam Generation. Solar RRL, 4(10), 2000341. https://doi.org/10.1002/SOLR.202000341
    Mukherjee, S. M., Sikorski, J., & Woods, H. J. (2008). Electron-Microscopy of Degraded Cellulose Fibres. Http://Dx.Doi.Org.Ezproxy.Lib.Ntust.Edu.Tw/10.1080/19447025108659661, 43(4), T196–T201. https://doi.org/10.1080/19447025108659661
    Mukherjee, S. M., & Woods, H. J. (1953). X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochimica et Biophysica Acta, 10(C), 499–511. https://doi.org/10.1016/0006-3002(53)90295-9
    Nadagouda, M. N., Vijayasarathy, P., Sin, A., Nam, H., Khan, S., Parambath, J. B. M., Mohamed, A. A., & Han, C. (2022). Antimicrobial activity of quaternary ammonium salts: structure-activity relationship. Medicinal Chemistry Research, 31(10), 1663–1678. https://doi.org/10.1007/S00044-022-02924-9/FIGURES/11
    Nagamune, H., Maeda, T., Ohkura, K., Yamamoto, K., Nakajima, M., & Kourai, H. (2000). Evaluation of the cytotoxic effects of bis-quaternary ammonium antimicrobial reagents on human cells. Toxicology in Vitro, 14(2), 139–147. https://doi.org/10.1016/S0887-2333(00)00003-5
    Nickerson, R. F., & Habrle, J. A. (2002). Cellulose Intercrystalline Structure. Industrial & Engineering Chemistry, 39(11), 1507–1512. https://doi.org/10.1021/IE50455A024
    Noronha, V. T., Camargos, C. H. M., Jackson, J. C., Souza Filho, A. G., Paula, A. J., Rezende, C. A., & Faria, A. F. (2021). Physical Membrane-Stress-Mediated Antimicrobial Properties of Cellulose Nanocrystals. https://doi.org/10.1021/acssuschemeng.0c08317
    Noronha, V. T., Jackson, J. C., Camargos, C. H. M., Paula, A. J., Rezende, C. A., & Faria, A. F. (2022). “attacking-Attacking” Anti-biofouling Strategy Enabled by Cellulose Nanocrystals-Silver Materials. ACS Applied Bio Materials, 5(3), 1025–1037. https://doi.org/10.1021/ACSABM.1C00929/ASSET/IMAGES/LARGE/MT1C00929_0007.JPEG
    Ozcelik, B., Lee, J. H., & Min, D. B. (2003). Effects of Light, Oxygen, and pH on the Absorbance of 2,2-Diphenyl-1-picrylhydrazyl. Journal of Food Science, 68(2), 487–490. https://doi.org/10.1111/J.1365-2621.2003.TB05699.X
    Pan, L., Wang, H., Wu, C., Liao, C., & Li, L. (2015). Tannic-Acid-Coated Polypropylene Membrane as a Separator for Lithium-Ion Batteries. ACS Applied Materials and Interfaces, 7(29), 16003–16010. https://doi.org/10.1021/ACSAMI.5B04245/ASSET/IMAGES/LARGE/AM-2015-04245A_0010.JPEG
    Peng, B. L., Dhar, N., Liu, H. L., & Tam, K. C. (2011). Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. The Canadian Journal of Chemical Engineering, 89(5), 1191–1206. https://doi.org/10.1002/CJCE.20554
    Pires, J. R. A., Souza, V. G. L., & Fernando, A. L. (2019). Valorization of energy crops as a source for nanocellulose production – Current knowledge and future prospects. Industrial Crops and Products, 140, 111642. https://doi.org/10.1016/J.INDCROP.2019.111642
    Qiu, W. Z., Wu, G. P., & Xu, Z. K. (2018). Robust Coatings via Catechol-Amine Codeposition: Mechanism, Kinetics, and Application. ACS Applied Materials and Interfaces, 10(6), 5902–5908. https://doi.org/10.1021/ACSAMI.7B18934/ASSET/IMAGES/LARGE/AM-2017-189344_0006.JPEG
    Qiu, W.-Z., Wu, G.-P., & Xu, Z.-K. (2018). Robust Coatings via Catechol−Amine Codeposition: Mechanism, Kinetics, and Application. https://doi.org/10.1021/acsami.7b18934
    Rai, P., Mehrotra, S., Priya, S., Gnansounou, E., & Sharma, S. K. (2021). Recent advances in the sustainable design and applications of biodegradable polymers. Bioresource Technology, 325, 124739. https://doi.org/10.1016/J.BIORTECH.2021.124739
    Rånby, B. G., & Ribi, E. (1950). Über den Feinbau der Zellulose. Experientia, 6(1), 12–14. https://doi.org/10.1007/BF02154044/METRICS
    Reitzer, F., Allais, M., Ball, V., & Meyer, F. (2018). Polyphenols at interfaces. Advances in Colloid and Interface Science, 257, 31–41. https://doi.org/10.1016/J.CIS.2018.06.001
    Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A., & Lien, E. J. (2002). Synthesis, biological evaluation, and quantitative structure -activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. Journal of Medicinal Chemistry, 45(2), 410–419. https://doi.org/10.1021/JM010252Q/SUPPL_FILE/JM010252Q_SB.PDF
    Revol, J. F., Bradford, H., Giasson, J., Marchessault, R. H., & Gray, D. G. (1992). Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules, 14(3), 170–172. https://doi.org/10.1016/S0141-8130(05)80008-X
    Rodríguez-Melcón, C., Alonso-Calleja, C., García-Fernández, C., Carballo, J., & Capita, R. (2022). Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria monocytogenes. Biology, 11(1). https://doi.org/10.3390/BIOLOGY11010046
    Roman, M., & Winter, W. T. (2004). Articles Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. https://doi.org/10.1021/BM034519
    Rootman, D. B., Lin, J. L., & Goldberg, R. (2014). Does the tyndall effect describe the blue hue periodically observed in subdermal hyaluronic acid gel placement? Ophthalmic Plastic and Reconstructive Surgery, 30(6), 524–527. https://doi.org/10.1097/IOP.0000000000000293
    Sahiner, N., Sagbas, S., Sahiner, M., Silan, C., Aktas, N., & Turk, M. (2016). Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties. International Journal of Biological Macromolecules, 82, 150–159. https://doi.org/10.1016/J.IJBIOMAC.2015.10.057
    Salajková, M., Berglund, L. A., & Zhou, Q. (2012). Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. Journal of Materials Chemistry, 22(37), 19798–19805. https://doi.org/10.1039/C2JM34355J
    Scheraga, H. A. (2012). Theory of Hydrophobic Interactions. Http://Dx.Doi.Org/10.1080/07391102.1998.10508260, 16(2), 447–460. https://doi.org/10.1080/07391102.1998.10508260
    Schiff, H. (1864). Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Justus Liebigs Annalen Der Chemie, 131(1), 118–119. https://doi.org/10.1002/JLAC.18641310113
    Schmidt, G., Christ, P. E., Kertes, P. E., Fisher, R. V., Miles, L. J., & Wilker, J. J. (2023). Underwater Bonding with a Biobased Adhesive from Tannic Acid and Zein Protein. ACS Applied Materials & Interfaces. https://doi.org/10.1021/ACSAMI.3C04009
    Senusi, F., Shahadat, M., & Ismail, S. (2019). Treatment of emulsion oil using tannic acid/tetraethylenepentamine-supported polymeric membrane. International Journal of Environmental Science and Technology, 16(12), 8255–8266. https://doi.org/10.1007/S13762-019-02233-6/METRICS
    Shih, T., Liu, N., Zhang, Q., Chen, Y., Zhang, W., Liu, Y., Qu, R., Wei, Y., & Feng, L. (2018). Preparation of DOPA-TA coated novel membrane for multifunctional water decontamination. Separation and Purification Technology, 194, 135–140. https://doi.org/10.1016/J.SEPPUR.2017.11.019
    Sileika, T. S., Barrett, D. G., Zhang, R., Lau, K. H. A., & Messersmith, P. B. (2013). Colorless Multifunctional Coatings Inspired by Polyphenols Found in Tea, Chocolate, and Wine. Angewandte Chemie International Edition, 52(41), 10766–10770. https://doi.org/10.1002/ANIE.201304922
    Spinella, S., Maiorana, A., Qian, Q., Dawson, N. J., Hepworth, V., McCallum, S. A., Ganesh, M., Singer, K. D., & Gross, R. A. (2016). Concurrent Cellulose Hydrolysis and Esterification to Prepare a Surface-Modified Cellulose Nanocrystal Decorated with Carboxylic Acid Moieties. ACS Sustainable Chemistry and Engineering, 4(3), 1538–1550. https://doi.org/10.1021/ACSSUSCHEMENG.5B01489/ASSET/IMAGES/LARGE/SC-2015-01489P_0009.JPEG
    Tang, J., Lee, M. F. X., Zhang, W., Zhao, B., Berry, R. M., & Tam, K. C. (2014). Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino) ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules, 15(8), 3052–3060. https://doi.org/10.1021/BM500663W/SUPPL_FILE/BM500663W_SI_001.PDF
    Tischer, M., Pradel, G., Ohlsen, K., & Holzgrabe, U. (2012). Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions? ChemMedChem, 7(1), 22–31. https://doi.org/10.1002/CMDC.201100404
    Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., & Hussin, M. H. (2020). Nanocellulose: From Fundamentals to Advanced Applications. Frontiers in Chemistry, 8, 535734. https://doi.org/10.3389/FCHEM.2020.00392/BIBTEX
    Wang, H., He, J., Zhang, M., Tam, K. C., & Ni, P. (2015). A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polymer Chemistry, 6(23), 4206–4209. https://doi.org/10.1039/C5PY00466G
    Wang, Z., Gao, J., Zhu, L., Meng, J., & He, F. (2022). Tannic acid-based functional coating: surface engineering of membranes for oil-in-water emulsion separation. Chem. Commun, 58, 12629. https://doi.org/10.1039/d2cc05102h
    Wen, Z., Shi, X., Li, X., Liu, W., Liu, Y., Zhang, R., Yu, Y., & Su, J. (2023). Mesoporous TiO 2 Coatings Regulate ZnO Nanoparticle Loading and Zn 2+ Release on Titanium Dental Implants for Sustained Osteogenic and Antibacterial Activity . ACS Applied Materials & Interfaces, 15, 15235–15249. https://doi.org/10.1021/ACSAMI.3C00812/ASSET/IMAGES/LARGE/AM3C00812_0008.JPEG
    Worch, J. C., Stubbs, C. J., Price, M. J., & Dove, A. P. (2021). Click Nucleophilic Conjugate Additions to Activated Alkynes: Exploring Thiol-yne, Amino-yne, and Hydroxyl-yne Reactions from (Bio)Organic to Polymer Chemistry. Chemical Reviews, 121(12), 6744–6776. https://doi.org/10.1021/ACS.CHEMREV.0C01076/ASSET/IMAGES/MEDIUM/CR0C01076_0058.GIF
    Xiang, H., Wang, B., Zhong, M., Liu, W., Yu, D., Wang, Y., Tam, K. C., Zhou, G., & Zhang, Z. (2022). Sustainable and Versatile Superhydrophobic Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering. https://doi.org/10.1021/ACSSUSCHEMENG.2C00311/ASSET/IMAGES/LARGE/SC2C00311_0010.JPEG
    Xiao, W., Deng, Z., Huang, J., Huang, Z., Zhuang, M., Yuan, Y., Nie, J., & Zhang, Y. (2019). Highly Sensitive Colorimetric Detection of a Variety of Analytes via the Tyndall Effect. https://doi.org/10.1021/acs.analchem.9b03824
    Yin, H., Casey, P. S., McCall, M. J., & Fenech, M. (2010). Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir, 26(19), 15399–15408. https://doi.org/10.1021/LA101033N/ASSET/IMAGES/LARGE/LA-2010-01033N_0005.JPEG
    Zhang, H. L., & Liu, J. (2015). Nanostructured Materials for a Sustainable Future. In Small (Vol. 11, Issue 27, pp. 3204–3205). Wiley-VCH Verlag. https://doi.org/10.1002/smll.201501300
    Zhang, L., Jiang, Y., Ding, Y., Povey, M., & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research, 9(3), 479–489. https://doi.org/10.1007/S11051-006-9150-1/METRICS
    Zhang, Z. Y., Sun, Y., Zheng, Y. D., He, W., Yang, Y. Y., Xie, Y. J., Feng, Z. X., & Qiao, K. (2020). A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications. Materials Science and Engineering: C, 106, 110249. https://doi.org/10.1016/J.MSEC.2019.110249
    Zhao, F., Zhou, X., Shi, Y., Qian, X., Alexander, M., Zhao, X., Mendez, S., Yang, R., Qu, L., & Yu, G. (2018). Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology 2018 13:6, 13(6), 489–495. https://doi.org/10.1038/s41565-018-0097-z
    Zhao, H., Kwak, J. H., Conrad Zhang, Z., Brown, H. M., Arey, B. W., & Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 68(2), 235–241. https://doi.org/10.1016/J.CARBPOL.2006.12.013
    Zhao, J., Wang, X., Liu, L., Yu, J., & Ding, B. (2018). Human Skin-Like, Robust Waterproof, and Highly Breathable Fibrous Membranes with Short Perfluorobutyl Chains for Eco-Friendly Protective Textiles. ACS Applied Materials and Interfaces, 10(36), 30887–30894. https://doi.org/10.1021/ACSAMI.8B10408/ASSET/IMAGES/LARGE/AM-2018-104088_0006.JPEG

    無法下載圖示
    全文公開日期 2026/08/17 (校外網路)
    全文公開日期 2026/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE