簡易檢索 / 詳目顯示

研究生: Dao Lam Gia Hao
Dao Lam Gia Hao
論文名稱: Highly Stable and Flexible Photodetectors Based on Perovskite/Cellulose Nanocrystal Films
Highly Stable and Flexible Photodetectors Based on Perovskite/Cellulose Nanocrystal Films
指導教授: 蔡孟霖
Meng-Lin Tsai
口試委員: 楊伯康
Po-Kang Yang
蔡東昇
Dung-Sheng Tsai
蔡孟霖
Meng-Lin Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 53
外文關鍵詞: cellulose nanocrystals, lead-free, perovskite, photodetectors, responsivity
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • ABSTRACT i ACKNOWLEDGEMENT ii CONTENTS iii LIST OF FIGURES v LIST OF TABLES viii CHAPTER 1 Introduction 1 1.1 Background 1 1.2 Motivation and aims 2 CHAPTER 2 Literature review 4 2.1 Photodetector general overview 4 2.1.1 Brief introduction of photodetectors 4 2.1.2 Optoelectronic performance of photodetectors 5 2.2 Introduction of halide perovskites 7 2.2.1 Structure of lead-based perovskites 7 2.2.2 Structure of lead-free perovskites 9 2.3 Introduction of cellulose nanocrystals 10 CHAPTER 3 Experimental section 11 3.1 Chemicals 11 3.2 Experimental instruments 12 3.2.1 Vacuum filtration system 13 3.2.2 X-ray diffractometer 13 3.2.3 UV–vis–NIR spectrometer 14 3.2.4 Scanning electron microscopy and energy-dispersive X-ray spectroscopy 14 3.2.5 I-V curve and photoresponse measurment 15 3.3 Experimental process 16 3.3.1 Preparation of dispersed CNC solution 16 3.3.2 Preparation process and structure of Zn-doped MA0.6FA0.4PbI3/CNCs films 16 3.3.3 Preparation process and structure of Sn-doped MA3Sb2I9/CNCs film 17 CHAPTER 4 Results and discussion 19 4.1 General properties and mechanisms 19 4.2 XRD analysis 21 4.3 Optical properties analysis 22 4.3.1 UV-Vis absorbance spectrum of Zn-doped MA0.6FA0.4PbI3/CNCs 22 4.3.2 UV-Vis absorption spectrum of Sn-doped MA3Sb2I9/CNCs 23 4.4 Optoelectronic performance analysis 24 4.4.1 I-V curves and responsivity 24 4.4.2 Time photoresponse 27 4.4.3 EQE measurement 29 4.4.4 Bending and stability test 29 4.5 SEM image and EDS analysis 32 4.6 Comparison 32 CHAPTER 5 Conclusion 35 Reference 36

    [1] Y. Zhang, J. Du, X. Wu, G. Zhang, Y. Chu, D. Liu, Y. Zhao, Z. Liang, J. Huang, Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films, ACS applied materials & interfaces 7(39) (2015) 21634-21638.
    [2] Y. Li, Y. Zhang, T. Li, M. Li, Z. Chen, Q. Li, H. Zhao, Q. Sheng, W. Shi, J. Yao, Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors, Nano Letters 20(8) (2020) 5646-5654.
    [3] W. Weng, S. Chang, C. Hsu, T. Hsueh, A ZnO-nanowire phototransistor prepared on glass substrates, ACS applied materials & interfaces 3(2) (2011) 162-166.
    [4] M. Schreier, L. Curvat, F. Giordano, L. Steier, A. Abate, S.M. Zakeeruddin, J. Luo, M.T. Mayer, M. Grätzel, Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics, Nature communications 6(1) (2015) 1-6.
    [5] Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, J. Huang, Giant switchable photovoltaic effect in organometal trihalide perovskite devices, Nature materials 14(2) (2015) 193-198.
    [6] X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, Y. Xie, High‐performance flexible broadband photodetector based on organolead halide perovskite, Advanced Functional Materials 24(46) (2014) 7373-7380.
    [7] S. Li, C. Zhang, J.-J. Song, X. Xie, J.-Q. Meng, S. Xu, Metal halide perovskite single crystals: from growth process to application, Crystals 8(5) (2018) 220.
    [8] X. Lü, Y. Wang, C.C. Stoumpos, Q. Hu, X. Guo, H. Chen, L. Yang, J.S. Smith, W. Yang, Y. Zhao, Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure‐induced amorphization and recrystallization, Advanced Materials 28(39) (2016) 8663-8668.
    [9] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environmental Science 7(3) (2014) 982-988.
    [10] D.E. Starr, G. Sadoughi, E. Handick, R.G. Wilks, J.H. Alsmeier, L. Köhler, M. Gorgoi, H.J. Snaith, M. Bär, Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3− xClx layers: surface depletion and interface enrichment, Energy & Environmental Science 8(5) (2015) 1609-1615.
    [11] J. Liu, Y. Xue, Z. Wang, Z.-Q. Xu, C. Zheng, B. Weber, J. Song, Y. Wang, Y. Lu, Y. Zhang, Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application, ACS nano 10(3) (2016) 3536-3542.
    [12] Y. Dong, Y. Gu, Y. Zou, J. Song, L. Xu, J. Li, J. Xue, X. Li, H. Zeng, Improving all‐inorganic perovskite photodetectors by preferred orientation and plasmonic effect, Small 12(40) (2016) 5622-5632.
    [13] T. Leijtens, R. Prasanna, K.A. Bush, G.E. Eperon, J.A. Raiford, A. Gold-Parker, E.J. Wolf, S.A. Swifter, C.C. Boyd, H.-P. Wang, Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells, Sustainable Energy & Fuels 2(11) (2018) 2450-2459.
    [14] I. Kopacic, B. Friesenbichler, S.F. Hoefler, B. Kunert, H. Plank, T. Rath, G. Trimmel, Enhanced performance of germanium halide perovskite solar cells through compositional engineering, ACS Applied Energy Materials 1(2) (2018) 343-347.
    [15] D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P.P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, Lead-free MA2CuClxBr4–x hybrid perovskites, Inorg. Chem. 55(3) (2016) 1044-1052.
    [16] N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications, Energy & Environmental Science 7(9) (2014) 3061-3068.
    [17] B. Yang, Y.-J. Li, Y.-X. Tang, X. Mao, C. Luo, M.-S. Wang, W.-Q. Deng, K.-L. Han, Constructing sensitive and fast lead-free single-crystalline perovskite photodetectors, The journal of physical chemistry letters 9(11) (2018) 3087-3092.
    [18] J.-C. Hebig, I. Kuhn, J. Flohre, T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications, ACS energy letters 1(1) (2016) 309-314.
    [19] D. Ju, T. Zhao, D. Yangyang, G. Zhang, X. Hu, D. Cui, X. Tao, Gas induced conversion of hybrid perovskite single crystal to single crystal for great enhancement of their photoelectric properties, Journal of Materials Chemistry A 5(41) (2017) 21919-21925.
    [20] D. Ju, X. Jiang, H. Xiao, X. Chen, X. Hu, X. Tao, Narrow band gap and high mobility of lead-free perovskite single crystal Sn-doped MA3Sb2I9, Journal of Materials Chemistry A 6(42) (2018) 20753-20759.
    [21] K.-Y. Li, J. Singh, C.-H. Chiang, Y.-L. Liu, Y.-C. Chen, T.-Y. Li, M.-L. Tsai, Full‐color perovskite quantum dots/cellulose nanocrystals enhancement films with excellent stability, Advanced Engineering Materials 23(9) (2021) 2100424.
    [22] C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang, W.W. Yu, Efficient and stable white LEDs with silica‐coated inorganic perovskite quantum dots, Advanced Materials 28(45) (2016) 10088-10094.
    [23] H. Huang, B. Chen, Z. Wang, T.F. Hung, A.S. Susha, H. Zhong, A.L. Rogach, Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices, Chemical science 7(9) (2016) 5699-5703.
    [24] X. Dai, Y. Deng, X. Peng, Y. Jin, Quantum‐dot light‐emitting diodes for large‐area displays: towards the dawn of commercialization, Advanced materials 29(14) (2017) 1607022.
    [25] D. Yang, X. Li, W. Zhou, S. Zhang, C. Meng, Y. Wu, Y. Wang, H. Zeng, CsPbBr3 quantum dots 2.0: benzenesulfonic acid equivalent ligand awakens complete purification, Advanced Materials 31(30) (2019) 1900767.
    [26] E. Cudjoe, M. Younesi, E. Cudjoe, O. Akkus, S.J. Rowan, Synthesis and fabrication of nanocomposite fibers of collagen-cellulose nanocrystals by coelectrocompaction, Biomacromolecules 18(4) (2017) 1259-1267.
    [27] T. Aziz, H. Fan, X. Zhang, F. Haq, A. Ullah, R. Ullah, F.U. Khan, M. Iqbal, Advance study of cellulose nanocrystals properties and applications, Journal of Polymers and the Environment 28(4) (2020) 1117-1128.
    [28] C.-H. Chiang, T.-Y. Li, H.-S. Wu, K.-Y. Li, C.-F. Hsu, L.-F. Tsai, P.-K. Yang, Y.-J. Lee, H.-C. Lee, C.-Y. Wang, High-stability inorganic perovskite quantum dot–cellulose nanocrystal hybrid films, Nanotechnology 31(32) (2020) 324002.
    [29] B. Yang, F. Zhang, J. Chen, S. Yang, X. Xia, T. Pullerits, W. Deng, K. Han, Ultrasensitive and fast all‐inorganic perovskite‐based photodetector via fast carrier diffusion, Advanced Materials 29(40) (2017) 1703758.
    [30] G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog, Chemical Science 5(12) (2014) 4712-4715.
    [31] X. He, Y. Qiu, S. Yang, Fully‐inorganic trihalide perovskite nanocrystals: A new research frontier of optoelectronic materials, Advanced Materials 29(32) (2017) 1700775.
    [32] W. Zhang, G.E. Eperon, H.J. Snaith, Metal halide perovskites for energy applications, Nature Energy 1(6) (2016) 1-8.
    [33] Z. Fan, K. Sun, J. Wang, Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites, Journal of Materials Chemistry A 3(37) (2015) 18809-18828.
    [34] Z. Xiao, Z. Song, Y. Yan, From lead halide perovskites to lead‐free metal halide perovskites and perovskite derivatives, Advanced Materials 31(47) (2019) 1803792.
    [35] S. Mondal, Preparation, properties and applications of nanocellulosic materials, Carbohydrate polymers 163 (2017) 301-316.
    [36] K.M. Chin, S. Sung Ting, H.L. Ong, M. Omar, Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: A review, Journal of Applied Polymer Science 135(13) (2018) 46065.
    [37] C. Negro, A.B. MartÃn, J.L. Sanchez-Salvador, C. Campano, E. Fuente, M.C. Monte, A. Blanco, Nanocellulose and its potential use for sustainable industrial applications, Latin American Applied Research-An international journal 50(2) (2020) 59-64.
    [38] N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed‐organic‐cation perovskite photovoltaics for enhanced solar‐light harvesting, Angewandte chemie 126(12) (2014) 3215-3221.
    [39] M. Hu, L. Liu, A. Mei, Y. Yang, T. Liu, H. Han, Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3, Journal of Materials Chemistry A 2(40) (2014) 17115-17121.
    [40] W. Zhao, D. Yang, Z. Yang, S.F. Liu, Zn-doping for reduced hysteresis and improved performance of methylammonium lead iodide perovskite hybrid solar cells, Materials Today Energy 5 (2017) 205-213.
    [41] N. Ito, M.A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air, The journal of physical chemistry letters 9(7) (2018) 1682-1688.
    [42] Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L.N. Quan, Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance, J. Am. Chem. Soc. 139(19) (2017) 6693-6699.
    [43] D. Gaspar, S. Fernandes, A.G. De Oliveira, J. Fernandes, P. Grey, R. Pontes, L. Pereira, R. Martins, M. Godinho, E. Fortunato, Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors, Nanotechnology 25(9) (2014) 094008.
    [44] S. Lim, M. Ha, Y. Lee, H. Ko, Large‐Area, Solution‐Processed, Hierarchical MAPbI3 nanoribbon srrays for self‐powered flexible photodetectors, Advanced Optical Materials 6(21) (2018) 1800615.
    [45] H. Deng, X. Yang, D. Dong, B. Li, D. Yang, S. Yuan, K. Qiao, Y.-B. Cheng, J. Tang, H. Song, Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability, Nano letters 15(12) (2015) 7963-7969.
    [46] F. Cao, W. Tian, M. Wang, H. Cao, L. Li, Semitransparent, flexible, and self‐powered photodetectors based on ferroelectricity‐assisted perovskite nanowire arrays, Advanced Functional Materials 29(24) (2019) 1901280.
    [47] Y.P. Jeon, S.J. Woo, T.W. Kim, Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles, Applied Surface Science 434 (2018) 375-381.
    [48] X. Luo, F. Zhao, L. Du, W. Lv, K. Xu, Y. Peng, Y. Wang, F. Lu, Ultrasensitive flexible broadband photodetectors achieving pA scale dark current, npj Flexible Electronics 1(1) (2017) 1-8.
    [49] C.-j. Teng, D. Xie, M.-x. Sun, S. Chen, P. Yang, Y.-l. Sun, Organic dye-sensitized CH3NH3PbI3 hybrid flexible photodetector with bulk heterojunction architectures, ACS applied materials & interfaces 8(45) (2016) 31289-31294.
    [50] F. Cao, W. Tian, L. Meng, M. Wang, L. Li, Ultrahigh‐performance flexible and self‐powered photodetectors with ferroelectric P(VDF‐TrFE)/perovskite bulk heterojunction, Advanced Functional Materials 29(15) (2019) 1808415.
    [51] F. Cao, W. Tian, M. Wang, M. Wang, L. Li, Stability enhancement of lead‐free CsSnI3 perovskite photodetector with reductive ascorbic acid additive, InfoMat 2(3) (2020) 577-584.
    [52] Z. Qi, X. Fu, T. Yang, D. Li, P. Fan, H. Li, F. Jiang, L. Li, Z. Luo, X. Zhuang, Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications, Nano Research 12(8) (2019) 1894-1899.
    [53] A.A. Hussain, A.K. Rana, M. Ranjan, Air-stable lead-free hybrid perovskite employing self-powered photodetection with an electron/hole-conductor-free device geometry, Nanoscale 11(3) (2019) 1217-1227.
    [54] X.-W. Tong, W.-Y. Kong, Y.-Y. Wang, J.-M. Zhu, L.-B. Luo, Z.-H. Wang, High-performance red-light photodetector based on lead-free bismuth halide perovskite film, ACS Applied Materials & Interfaces 9(22) (2017) 18977-18985.
    [55] Z. Liu, S. Dai, Y. Wang, B. Yang, D. Hao, D. Liu, Y. Zhao, L. Fang, Q. Ou, S. Jin, Photoresponsive transistors based on lead‐free perovskite and carbon nanotubes, Advanced Functional Materials 30(3) (2020) 1906335.
    [56] C. Wu, B. Du, W. Luo, Y. Liu, T. Li, D. Wang, X. Guo, H. Ting, Z. Fang, S. Wang, Highly efficient and stable self‐powered ultraviolet and deep‐blue photodetector based on Cs2AgBiBr6/SnO2 heterojunction, Advanced Optical Materials 6(22) (2018) 1800811.
    [57] Z.-X. Zhang, C. Li, Y. Lu, X.-W. Tong, F.-X. Liang, X.-Y. Zhao, D. Wu, C. Xie, L.-B. Luo, Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap, The Journal of Physical Chemistry Letters 10(18) (2019) 5343-5350.

    無法下載圖示 全文公開日期 2028/02/07 (校內網路)
    全文公開日期 2028/02/07 (校外網路)
    全文公開日期 2028/02/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE