簡易檢索 / 詳目顯示

研究生: Jittrakorn Udomsin
Jittrakorn Udomsin
論文名稱: 超親水/水下超疏油高分子複合材料之製備與其在乳化液分離與廢水純化之應用
Preparation of Superhydrophilic and Underwater Superoleophobic Polymer Composites for Emulsion Separation and Water Purification
指導教授: 王志逢
Chih-Feng Wang
口試委員: 王志逢
Chih-Feng Wang
賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 93
中文關鍵詞: SuperhydrophilicityUnderwater superoleophobicityMembraneEmulsion separationDye adsorptionTannic acidPolymer
外文關鍵詞: Superhydrophilicity, Underwater superoleophobicity, Membrane, Emulsion separation, Dye adsorption, Tannic acid, Polymer
相關次數: 點閱:236下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 油汙洩漏和工業廢水對於環境和人體都有著劇烈的負面影響。在這篇研究中,我們藉由環境友善製程來製備一系列具有超親水與水下超疏油特性之高分子複合材料,並將這些材料應用用於油水分離和廢水的純化。在這篇研究中包含兩個主要項目將在以下分別敘述:
    在第一份研究中,我們以纖維醋酸薄膜作為基材,我們用單寧酸(tannic acid, TA)和聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)改質奈米碳管(carbon nanotube, CNT)薄膜,並利用真空過濾法將其置於纖維醋酸薄膜上。製備得到的CNT/TA/PVP薄膜表現了超親水和水下超疏油的性能。此薄膜對原油亦能展現優異的自清潔和抗污能力。此外在處理添加和無添加界面活性劑的水包油型乳化液時能展現高流速和極佳的分離效率。更甚者此薄膜能分離原油的乳化液。
    在第二份研究中,我們製備一以棉花為基材的超親水材料。利用單寧酸、鐵離子(Fe3+)和聚二烯丙基二甲基氯化銨(poly(diallyl dimethylammonium chloride, PDDA)來改質棉花。此TA/Fe3+/PDDA棉花在改質後展現了超親水和水下超疏油的特性。同時TA/Fe3+/PDDA對於水包油型或油包水型乳化液的分離上都有著優異的分離表現。此外還能夠吸附水溶夜中陰離子型的染料。
    我們所製備的超親水高分子複合材在實驗中擁有著很好的表現,在此同時其製備流程是環境友善且低成本的,這暗示著在實際的應用上有著相當的潛力。
    關鍵字: 超親水、水下超疏油、薄膜、乳化液分離、染料吸附、單寧酸、高分子


    Oil spills and industrial oily wastewater, which dramatically harmful for environmental and human health. In this study, we prepared superhydrophilic polymer composites for oil/water separation and wastewater purification through eco-friendly processes. This study includes two subjects and describes as follow, respectively:
    In first research topic, we prepared oil/water separation membrane from the tannic acid (TA) and polyvinylpyrrolidone (PVP) modified carbon nanotube (CNT) membranes on cellulose acetate membrane substrates via a vacuum filtration method. The CNT/TA/PVP membranes possessed superhydrophilic and underwater superoleophobic properties. As-prepared membrane has excellent self-cleaning and anti-fouling properties from crude oil fouling. Furthermore, the CNT/TA/PVP membrane could be used for separations surfactant-free and surfactant-stabilized oil-in-water emulsion with high fluxes and efficiencies. Most interesting, we can separate the surfactant-stabilized crude oil-in-water emulsion by using CNT/TA/PVP membrane.
    In second research attempted to, prepared a superhydrophilic cotton-based material by modifying cotton with tannic acid (TA), iron ion (Fe3+) and poly(diallyl dimethylammonium chloride) (PDDA). The TA/Fe3+/PDDA modified cotton shown superhydrophilicity and underwater superoleophobicity. Meanwhile, TA/Fe3+/PDDA modified cotton could be used for separations for both surfactant-stabilized oil-in-water and oil-in-water emulsions with excellent separation performance. Furthermore, the TA/Fe3+/PDDA modified cotton also showed an adsorption ability for anionic dyes in aqueous solutions.
    Keywords: Superhydrophilic, Underwater superoleophobic, Membrane, Emulsion separation, Dye adsorption, Tannic acid, Polymer

    摘要 I Abstract II Acknowledgement III Table of contents IV List of figures VIII List of tables IV Chapter 1 Introduction 1 1.1 Oil pollution in water 1 1.2 Wettability 2 1.2.1 Importance of Wettability on oil/water separation 2 1.2.2 Solid surface wettability 2 1.2.3 Young’s equation 3 1.2.4 Wenzel equation 4 1.2.5 Cassie-Baxter equation 4 1.2.6 Contact angle hysteresis (CHA) 5 1.2.7 sliding angle (SA) 6 1.3 Superwetting materials 7 1.4 Superhydrophobic and superoleophilic material for oil/water separation 8 1.5 Superhydrophilic and underwater superoleophobic materials for oil/water separation 11 1.6 Superwetting materials with switchable wettability for oil/water separation 13 1.7 Carbon nanotube (CNT) 14 1.8 CNT membrane for oil/water separation 15 1.9 Tannic acid (TA) 18 1.10 Polyvinylpyrrolidone (PVP) 21 1.11 Poly (diallyldimethyllammonium chloride) (PDDA) 22 1.12 Motivation and purpose 23 Chapter 2 Experiments and characterizations 25 2.1 Materials 25 2.2 Preparation of CNT, CNT/TA and CNT/TA/PVP membrane 25 2.3 Preparation of TA/Fe3+/PDDA modified cotton 26 2.4 Oil-in-water emulsion preparation 26 2.5 Characterizations 27 2.6 Permeation flux and rejection efficiency 27 2.7 Dye absorption 28 Chapter 3 Results and discussions 30 3.1 Preparation of CNT/TA/PVP modified CA membrane for emulsion separations 30 3.1.1 Surface morphology and structural characterization of CNT, CNT/TA, and CNT/TA/PVP membranes 30 3.1.2 Surface compositions and chemical bonding of CNT, CNT/TA, and CNT/TA/PVP membranes 32 3.1.3 Wettabilities of CNT, CNT/TA, and CNT/TA/PVP membranes 37 3.1.4 Self-cleaning properties of CNT and CNT/TA/PVP membranes 39 3.1.5 Anti-fouling properties of CNT and CNT/TA/PVP membranes 40 3.1.6 Emulsion separation performance 41 3.1.7 Recycle test of the membrane 46 3.1.8 Comparison table of CNT membrane 48 3.2 TA/Fe3+/PDDA modified cotton 49 3.2.1 Surface morphology and structural characterization of TA/Fe3+/PDDA modified cotton 50 3.2.2 Wettability of pristine and TA/Fe3+/PDDA modified cotton 52 3.2.3 Oil-water mixture separation 53 3.2.4 Dye absorption 54 3.2.5 Oil-in-water emulsion separation of compressed TA/Fe3+/PDDA modified cotton 56 3.2.6 Dye mixed oil-in-water emulsion separation 58 3.2.7 Underoil superhydrophilicity of TA/Fe3+/PDDA modified cotton 59 3.2.8 Water-in-oil emulsion separation 60 3.2.9 Comparison of modified cotton for emulsion separation 63 Chapter 4 Conclusions 65 References 66

    [1] J.-J. Li, Y.-N. Zhou, Z.-H. Luo, Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review, Progress in Polymer Science, 87 (2018) 1-33.
    [2] X. Yue, Z. Li, T. Zhang, D. Yang, F. Qiu, Design and fabrication of superwetting fiber-based membranes for oil/water separation applications, Chemical Engineering Journal, 364 (2019) 292-309.
    [3] I.B. Ivshina, M.S. Kuyukina, A.V. Krivoruchko, A.A. Elkin, S.O. Makarov, C.J. Cunningham, T.A. Peshkur, R.M. Atlas, J.C. Philp, Oil spill problems and sustainable response strategies through new technologies, Environmental science. Processes & impacts, 17 (2015) 1201-1219.
    [4] M. Cheryan, N. Rajagopalan, Membrane processing of oily streams. Wastewater treatment and waste reduction, Journal of membrane science, 151 (1998) 13-28.
    [5] Z. Xue, Y. Cao, N. Liu, L. Feng, L. Jiang, Special wettable materials for oil/water separation, Journal of Materials Chemistry A, 2 (2014) 2445-2460.
    [6] Y. Zhu, D. Wang, L. Jiang, J. Jin, Recent progress in developing advanced membranes for emulsified oil/water separation, NPG Asia Materials, 6 (2014) e101-e101.
    [7] G. Kwon, E. Post, A. Tuteja, Membranes with selective wettability for the separation of oil-water mixtures, MRS Communications, 5 (2015) 475.
    [8] Q. Ma, H. Cheng, A.G. Fane, R. Wang, H. Zhang, Recent development of advanced materials with special wettability for selective oil/water separation, Small, 12 (2016) 2186-2202.
    [9] R.K. Gupta, G.J. Dunderdale, M.W. England, A. Hozumi, Oil/water separation techniques: a review of recent progresses and future directions, Journal of Materials Chemistry A, 5 (2017) 16025-16058.
    [10] W. Abdallah, J.S. Buckley, A. Carnegie, J. Edwards, B. Herold, E. Fordham, A. Graue, T. Habashy, N. Seleznev, C. Signer, Fundamentals of wettability, Technology, 38 (1986) 268.
    [11] Y. Guan, F. Cheng, Z. Pan, Superwetting polymeric three dimensional (3d) porous materials for oil/water separation: A review, Polymers, 11 (2019) 806.
    [12] Y. Deng, C. Peng, M. Dai, D. Lin, I. Ali, S.S. Alhewairini, X. Zheng, G. Chen, J. Li, I. Naz, Recent development of super-wettable materials and their applications in oil-water separation, Journal of Cleaner Production, (2020) 121624.
    [13] J. Yong, F. Chen, Q. Yang, J. Huo, X. Hou, Superoleophobic surfaces, Chemical Society Reviews, 46 (2017) 4168-4217.
    [14] Y. Tian, B. Su, L. Jiang, Interfacial material system exhibiting superwettability, Advanced Materials, 26 (2014) 6872-6897.
    [15] T. Young, III. An essay on the cohesion of fluids, Philosophical transactions of the royal society of London, (1805) 65-87.
    [16] R.N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, 28 (1936) 988-994.
    [17] A. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society, 40 (1944) 546-551.
    [18] J. Gonzales, D. Kurihara, T. Maeda, M. Yamazaki, T. Saruhashi, S. Kimura, H. Sakaue, Novel superhydrophobic surface with solar-absorptive material for improved de-icing performance, Materials, 12 (2019) 2758.
    [19] M. Liu, S. Wang, Z. Wei, Y. Song, L. Jiang, Bioinspired design of a superoleophobic and low adhesive water/solid interface, Advanced Materials, 21 (2009) 665-669.
    [20] Q. Cheng, M. Li, Y. Zheng, B. Su, S. Wang, L. Jiang, Janus interface materials: superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leaf, Soft Matter, 7 (2011) 5948-5951.
    [21] K. Liu, X. Yao, L. Jiang, Recent developments in bio-inspired special wettability, Chemical Society Reviews, 39 (2010) 3240-3255.
    [22] M. Liu, Y. Zheng, J. Zhai, L. Jiang, Bioinspired super-antiwetting interfaces with special liquid− solid adhesion, Accounts of chemical research, 43 (2010) 368-377.
    [23] M. Liu, L. Jiang, Switchable adhesion on liquid/solid interfaces, Advanced Functional Materials, 20 (2010) 3753-3764.
    [24] Z.-x. Xue, L. Jiang, Bioinspired underwater superoleophobic surfaces, Acta Polymerica Sinica, (2012) 1091-1101.
    [25] L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang, D. Zhu, A super‐hydrophobic and super‐oleophilic coating mesh film for the separation of oil and water, Angewandte Chemie, 116 (2004) 2046-2048.
    [26] C.-F. Wang, S.-J. Lin, Robust superhydrophobic/superoleophilic sponge for effective continuous absorption and expulsion of oil pollutants from water, ACS applied materials & interfaces, 5 (2013) 8861-8864.
    [27] C.-F. Wang, F.-S. Tzeng, H.-G. Chen, C.-J. Chang, Ultraviolet-durable superhydrophobic zinc oxide-coated mesh films for surface and underwater–oil capture and transportation, Langmuir, 28 (2012) 10015-10019.
    [28] C.-F. Wang, S.-Y. Yang, S.-W. Kuo, Eco-friendly superwetting material for highly effective separations of oil/water mixtures and oil-in-water emulsions, Scientific reports, 7 (2017) 43053.
    [29] X. Bai, Z. Zhao, H. Yang, J. Li, ZnO nanoparticles coated mesh with switchable wettability for on-demand ultrafast separation of emulsified oil/water mixtures, Separation and Purification Technology, 221 (2019) 294-302.
    [30] D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing, Chemical Society Reviews, 42 (2013) 2824-2860.
    [31] C. Wang, K. Takei, T. Takahashi, A. Javey, Carbon nanotube electronics--moving forward, Chem Soc Rev, 42 (2013) 2592-2609.
    [32] L. Yu, C. Shearer, J. Shapter, Recent development of carbon nanotube transparent conductive films, Chemical reviews, 116 (2016) 13413-13453.
    [33] N. Karousis, N. Tagmatarchis, D. Tasis, Current progress on the chemical modification of carbon nanotubes, Chemical reviews, 110 (2010) 5366-5397.
    [34] J. Gu, P. Xiao, J. Chen, J. Zhang, Y. Huang, T. Chen, Janus polymer/carbon nanotube hybrid membranes for oil/water separation, ACS applied materials & interfaces, 6 (2014) 16204-16209.
    [35] X. Chen, L. Hong, Y. Xu, Z.W. Ong, Ceramic pore channels with inducted carbon nanotubes for removing oil from water, ACS applied materials & interfaces, 4 (2012) 1909-1918.
    [36] Y. Lu, W. Yuan, Superhydrophobic/superoleophilic and reinforced ethyl cellulose sponges for oil/water separation: synergistic strategies of cross-linking, carbon nanotube composite, and nanosilica modification, ACS applied materials & interfaces, 9 (2017) 29167-29176.
    [37] M. Ge, C. Cao, J. Huang, X. Zhang, Y. Tang, X. Zhou, K. Zhang, Z. Chen, Y. Lai, Rational design of materials interface at nanoscale towards intelligent oil–water separation, Nanoscale Horizons, 3 (2018) 235-260.
    [38] P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review, Composites Part A: Applied Science and Manufacturing, 41 (2010) 1345-1367.
    [39] J. Saththasivam, W. Yiming, K. Wang, J. Jin, Z. Liu, A novel architecture for carbon nanotube membranes towards fast and efficient oil/water separation, Scientific reports, 8 (2018) 1-6.
    [40] J. Hu, X. Li, J. Dong, Development of Highly Efficient Oil–Water Separation Carbon Nanotube Membranes with Stimuli-Switchable Fluxes, ACS omega, 3 (2018) 6635-6641.
    [41] Z. Shi, W. Zhang, F. Zhang, X. Liu, D. Wang, J. Jin, L. Jiang, Ultrafast separation of emulsified oil/water mixtures by ultrathin free‐standing single‐walled carbon nanotube network films, Advanced materials, 25 (2013) 2422-2427.
    [42] L. Hu, S. Gao, X. Ding, D. Wang, J. Jiang, J. Jin, L. Jiang, Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions, ACS nano, 9 (2015) 4835-4842.
    [43] X. Zhao, L. Cheng, R. Wang, N. Jia, L. Liu, C. Gao, Bioinspired synthesis of polyzwitterion/titania functionalized carbon nanotube membrane with superwetting property for efficient oil-in-water emulsion separation, Journal of Membrane Science, 589 (2019) 117257.
    [44] Y.-N. Jin, H.-C. Yang, H. Huang, Z.-K. Xu, Underwater superoleophobic coatings fabricated from tannic acid-decorated carbon nanotubes, RSC Advances, 5 (2015) 16112-16115.
    [45] Y. Zhang, Y. Su, J. Peng, X. Zhao, J. Liu, J. Zhao, Z. Jiang, Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride, Journal of Membrane Science, 429 (2013) 235-242.
    [46] D.G. Barrett, T.S. Sileika, P.B. Messersmith, Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings, Chemical communications, 50 (2014) 7265-7268.
    [47] D. Lin, N. Liu, K. Yang, L. Zhu, Y. Xu, B. Xing, The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions, Carbon, 47 (2009) 2875-2882.
    [48] D. Lin, B. Xing, Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions, Environmental science & technology, 42 (2008) 5917-5923.
    [49] X. Zhang, M. Liu, X. Zhang, F. Deng, C. Zhou, J. Hui, W. Liu, Y. Wei, Interaction of tannic acid with carbon nanotubes: enhancement of dispersibility and biocompatibility, Toxicology Research, 4 (2015) 160-168.
    [50] H. Ejima, J.J. Richardson, K. Liang, J.P. Best, M.P. van Koeverden, G.K. Such, J. Cui, F. Caruso, One-step assembly of coordination complexes for versatile film and particle engineering, Science, 341 (2013) 154-157.
    [51] Z. Wang, H.-C. Yang, F. He, S. Peng, Y. Li, L. Shao, S.B. Darling, Mussel-Inspired Surface Engineering for Water-Remediation Materials, Matter, 1 (2019) 115-155.
    [52] Y. Xiao, D. Guo, T. Li, Q. Zhou, L. Shen, R. Li, Y. Xu, H. Lin, Facile fabrication of superhydrophilic nanofiltration membranes via tannic acid and irons layer-by-layer self-assembly for dye separation, Applied Surface Science, 515 (2020) 146063.
    [53] H. Fan, L. Wang, X. Feng, Y. Bu, D. Wu, Z. Jin, Supramolecular hydrogel formation based on tannic acid, Macromolecules, 50 (2017) 666-676.
    [54] M. Teodorescu, M. Bercea, Poly (vinylpyrrolidone)–a versatile polymer for biomedical and beyond medical applications, Polymer-Plastics Technology and Engineering, 54 (2015) 923-943.
    [55] S. Robinson, P.A. Williams, Inhibition of protein adsorption onto silica by polyvinylpyrrolidone, Langmuir, 18 (2002) 8743-8748.
    [56] M. Hayama, K.-i. Yamamoto, F. Kohori, K. Sakai, How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility?, Journal of membrane science, 234 (2004) 41-49.
    [57] R. Mishra, R. Varshney, N. Das, D. Sircar, P. Roy, Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering, European Polymer Journal, 119 (2019) 155-168.
    [58] F. Beygmohammdi, H.N. Kazerouni, Y. Jafarzadeh, H. Hazrati, R. Yegani, Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system, Chemical Engineering Research and Design, 154 (2020) 232-240.
    [59] H. Fahmy, M. Abo-Shosha, N. Ibrahim, Finishing of cotton fabrics with poly (N-vinyl-2-pyrrolidone) to improve their performance and antibacterial properties, Carbohydrate Polymers, 77 (2009) 845-850.
    [60] A. Chapiro, C. Legris, Gel formation in the radiolysis of poly (N-vinylpyrrolidone) solutions, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 28 (1986) 143-144.
    [61] H.K. Can, B. Kirci, S. Kavlak, A. Güner, Removal of some textile dyes from aqueous solutions by poly (N-vinyl-2-pyrrolidone) and poly (N-vinyl-2-pyrrolidone)/K2S2O8 hydrogels, Radiation Physics and Chemistry, 68 (2003) 811-818.
    [62] C. Anderson, F. Rodriguez, D. Thurston, Crosslinking aqueous poly (vinyl pyrrolidone) solutions by persulfate, Journal of Applied Polymer Science, 23 (1979) 2453-2462.
    [63] N. Ochoa, P. Pradanos, L. Palacio, C. Pagliero, J. Marchese, A. Hernández, Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: characterisation of polyethersulfone UF membranes with dopes containing different PVP, Journal of Membrane Science, 187 (2001) 227-237.
    [64] Q. Lin, M. Gao, J. Chang, H. Ma, Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes, Carbohydrate polymers, 151 (2016) 283-294.
    [65] X. Wang, X. Wang, J. Zhao, J. Song, C. Su, Z. Wang, Surface modified TiO2 floating photocatalyst with PDDA for efficient adsorption and photocatalytic inactivation of Microcystis aeruginosa, Water research, 131 (2018) 320-333.
    [66] Z. Cui, P.J. Kulesza, C.M. Li, W. Xing, Pd nanoparticles supported on HPMo-PDDA-MWCNT and their activity for formic acid oxidation reaction of fuel cells, International journal of hydrogen energy, 36 (2011) 8508-8517.
    [67] T. Ratajski, I. Kalemba-Rec, P. Indyka, P. Ledwig, M.J. Szczerba, B. Dubiel, Effect of PDDA surfactant on the microstructure and properties of electrodeposited SiO2/Ni nanocomposites, Materials Characterization, 163 (2020) 110229.
    [68] S.A. Dehdast, G. Chiari Fard, L. Maleknia, M. Giahi, A. Almasian, M. Shabani, Synthesis and Characterization of Novel Antibacterial PDDA/Honey Nanofiber Against Gram-Positive and Gram-Negative Bacteria, Nanomedicine Research Journal, 5 (2020) 75-89.
    [69] L.-P. Xu, J. Peng, Y. Liu, Y. Wen, X. Zhang, L. Jiang, S. Wang, Nacre-inspired design of mechanical stable coating with underwater superoleophobicity, ACS nano, 7 (2013) 5077-5083.
    [70] O.A. Oyewo, E.E. Elemike, D.C. Onwudiwe, M.S. Onyango, Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater, International Journal of Biological Macromolecules, (2020).
    [71] X. Zhou, J.J. Koh, C. He, Robust oil-fouling resistance of amorphous cellulose surface underwater: A wetting study and application, Langmuir, 35 (2019) 839-847.
    [72] M. Wang, M. Peng, J. Zhu, Y.-D. Li, J.-B. Zeng, Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation, Carbohydrate Polymers, (2020) 116449.
    [73] H. Zhang, G. Guo, L. Liu, F. Tao, J. Ren, L. Zheng, Durable, water-cleanable, superhydrophilic coatings for oil/water separation under harsh conditions, Journal of Saudi Chemical Society, 23 (2019) 1007-1015.
    [74] F. Li, B. Bhushan, Y. Pan, X. Zhao, Bioinspired superoleophobic/superhydrophilic functionalized cotton for efficient separation of immiscible oil-water mixtures and oil-water emulsions, Journal of colloid and interface science, 548 (2019) 123-130.
    [75] M. Seth, H. Khan, S. Jana, Hierarchically structured alpha-nickel hydroxide based superhydrophobic and antibacterial coating on cellulosic materials for oil-water separation, Materials Chemistry and Physics, (2020) 123030.
    [76] F. Guo, Q. Wen, Y. Peng, Z. Guo, Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation, Journal of Materials Chemistry A, 5 (2017) 21866-21874.
    [77] Y. He, M. Wan, Z. Wang, X. Zhang, Y. Zhao, L. Sun, Fabrication and characterization of degradable and durable fluoride-free super-hydrophobic cotton fabrics for oil/water separation, Surface and Coatings Technology, 378 (2019) 125079.
    [78] Q.-Y. Cheng, X.-P. An, Y.-D. Li, C.-L. Huang, J.-B. Zeng, Sustainable and biodegradable superhydrophobic coating from epoxidized soybean oil and ZnO nanoparticles on cellulosic substrates for efficient oil/water separation, ACS Sustainable Chemistry & Engineering, 5 (2017) 11440-11450.
    [79] Q.-Y. Cheng, C.-S. Guan, M. Wang, Y.-D. Li, J.-B. Zeng, Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation, Carbohydrate polymers, 199 (2018) 390-396.
    [80] T. Yan, X. Chen, T. Zhang, J. Yu, X. Jiang, W. Hu, F. Jiao, A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation, Chemical Engineering Journal, 347 (2018) 52-63.
    [81] Y. Deng, D. Han, Y.-Y. Deng, Q. Zhang, F. Chen, Q. Fu, Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation, Chemical Engineering Journal, 379 (2020) 122391.
    [82] S. Lei, Z. Shi, J. Ou, F. Wang, M. Xue, W. Li, G. Qiao, X. Guan, J. Zhang, Durable superhydrophobic cotton fabric for oil/water separation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 533 (2017) 249-254.
    [83] J. Ren, F. Tao, L. Liu, X. Wang, Y. Cui, A novel TiO2@ stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation, Carbohydrate Polymers, 232 (2020) 115807.
    [84] F. Li, W. Kong, X. Zhao, Y. Pan, Multifunctional TiO2-Based Superoleophobic/Superhydrophilic Coating for Oil–Water Separation and Oil Purification, ACS Applied Materials & Interfaces, 12 (2020) 18074-18083.
    [85] Y. Li, Z. Feng, Y. He, Y. Fan, J. Ma, X. Yin, Facile way in fabricating a cotton fabric membrane for switchable oil/water separation and water purification, Applied Surface Science, 441 (2018) 500-507.
    [86] Y. Xiao, D. Guo, T. Li, Q. Zhou, L. Shen, R. Li, Y. Xu, H. Lin, Facile fabrication of superhydrophilic nanofiltration membranes via tannic acid and irons layer-by-layer self-assembly for dye separation, Applied Surface Science, (2020) 146063.
    [87] C. Liu, Y. Guo, J. Zhang, B. Tian, O. Lin, Y. Liu, C. Zhang, Tailor-made high-performance reverse osmosis membranes by surface fixation of hydrophilic macromolecules for wastewater treatment, RSC advances, 9 (2019) 17766-17777.
    [88] A.V. Dudchenko, J. Rolf, L. Shi, L. Olivas, W. Duan, D. Jassby, Coupling underwater superoleophobic membranes with magnetic pickering emulsions for fouling-free separation of crude oil/water mixtures: an experimental and theoretical study, ACS nano, 9 (2015) 9930-9941.
    [89] S. Zarghami, T. Mohammadi, M. Sadrzadeh, B. Van der Bruggen, Bio-inspired anchoring of amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) onto PES membrane using polydopamine for oily wastewater treatment, Science of The Total Environment, 711 (2020) 134951.
    [90] L. Yan, G. Zhang, L. Zhang, W. Zhang, J. Gu, Y. Huang, J. Zhang, T. Chen, Robust construction of underwater superoleophobic CNTs/nanoparticles multifunctional hybrid membranes via interception effect for oily wastewater purification, Journal of membrane science, 569 (2019) 32-40.
    [91] G. Yi, S. Chen, X. Quan, G. Wei, X. Fan, H. Yu, Enhanced separation performance of carbon nanotube–polyvinyl alcohol composite membranes for emulsified oily wastewater treatment under electrical assistance, Separation and Purification Technology, 197 (2018) 107-115.
    [92] Y. Liu, Y. Su, J. Cao, J. Guan, L. Xu, R. Zhang, M. He, Q. Zhang, L. Fan, Z. Jiang, Synergy of the mechanical, antifouling and permeation properties of a carbon nanotube nanohybrid membrane for efficient oil/water separation, Nanoscale, 9 (2017) 7508-7518.
    [93] Q. Cheng, D. Ye, C. Chang, L. Zhang, Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation, Journal of Membrane Science, 525 (2017) 1-8.
    [94] X. Zhao, L. Cheng, N. Jia, R. Wang, L. Liu, C. Gao, Polyphenol-metal manipulated nanohybridization of CNT membranes with FeOOH nanorods for high-flux, antifouling and self-cleaning oil/water separation, Journal of Membrane Science, 600 (2020) 117857.
    [95] H. Tang, Y. Fu, C. Yang, D. Zhu, J. Yang, A UV-driven superhydrophilic/superoleophobic polyelectrolyte multilayer film on fabric and its application in oil/water separation, RSC advances, 6 (2016) 91301-91307.
    [96] X. Chen, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, An I-doped (BiO) 2CO3 nanosheets-wrapped carbon cloth for highly efficient separation of oil-in-water emulsions, Journal of Membrane Science, 567 (2018) 209-215.

    QR CODE