簡易檢索 / 詳目顯示

研究生: 洪敏竣
Min-jyun Hong
論文名稱: 氧化銅之金屬-半導體-金屬蕭特基接面二極體光感測特性分析
Photosensing properties of CuO based metal-semiconductor-metal Schottky photodiodes
指導教授: 趙良君
Liang-Chiun Chao
林保宏
Pao-hung Lin
口試委員: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 66
中文關鍵詞: 氧化銅氧化亞銅載子濃度遷移率光響應
外文關鍵詞: cupric oxide, cuprous oxide, carrier concentration, mobility, responsivity
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

此研究先以反應式離子束濺鍍法於SiO2基板上依不同的氧氬比沉積銅氧化物薄膜,由Ar:O2=3.5:2.5的比例沉積300 oC與400 oC的氧化銅和Ar:O2=4.2:0.7的比例沉積300 oC與400 oC的氧化亞銅薄膜,XRD證實各別為氧化銅、氧化亞銅結晶性佳的多晶薄膜。CuO與Cu2O薄膜載子濃度得到約為1014~1015 cm-3,其遷移率最好為300 oC的Cu2O薄膜得到11 cm2V-1s-1。CuO薄膜在室溫下沉積Cu指叉電極,利用金屬-半導體-金屬結構之光電二極體探討光電特性,該樣品入射光子與光電流呈線性關係,經量測結果在波長範圍400~1300 nm有光電流,且在700 nm可以得到最高光響應為43 mA/W,其快速的decay time小於1 μs,經計算後推測受RC limited影響。另外求得Cu/CuO接面其蕭特基位障為0.87 eV。這些特性結果有助於製作CuO材料光伏元件上使用。


Cupric oxide (CuO) and Cuprous oxide (Cu2O) thin films are deposited on SiO2/Si substrates by reactive ion beam sputter deposition at 300 ~ 400oC utilizing an anode layer ion source. Both argon and oxygen are passed simultaneously through the ion source to act as sputtering and reacting species, respectively. With an Ar:O2 ratio of 3.5:2.5, single phase polycrystalline CuO thin films are obtained. Ar:O2 ratio to 4.2:0.7 results in single phase polycrystalline Cu2O. The carrier concentration of CuO and Cu2O thin film are 1014 and 1015 cm-3, respectively. The mobility was achieved from Cu2O deposited at 300oC that equals to 11 cm2V-1s-1.
CuO metal-semiconductor-metal (MSM) Schottky photodiodes (PD) are fabricated by depositing Cu interdigitated electrodes on CuO thin films at room temperature. Photosensing properties of the CuO MSM PD are characterized from 400 ~ 1300 nm and a maximum responsivity of 43 mA/W is found at 700 nm. The photocurrent transient properties are found to be RC limited with a decay time less than 1 μs. The Schottky barrier height between Cu and CuO is 0.87 eV. These findings may serve as valuable information for the optimization of CuO based photovoltaic devices.

中文摘要.......................... Ι Abstract......................... ΙΙ 致謝.............................III 圖目錄............................VI 表目錄..........................VIII 第一章 緒論......................1 1-1 前言......................1 1-2 研究動機..................2 第二章 文獻回顧與理論基礎........3 2-1離子束濺鍍原理..................3 2-2 銅、氧化銅、氧化亞銅結構及特性簡介..4 2-2-1 銅(Copper, Cu)...............4 2-2-2 氧化亞銅(Cuprous oxide, Cu2O).....4 2-2-3 氧化銅(Cupric oxide, CuO).........4 2-3 氧化銅、氧化亞銅薄膜成長方式........6 2-4 金屬-半導體接面特姓.................9 2-4-1 歐姆接觸(Ohmic contact) ..........9 2-4-2 蕭特基接觸(Schottky contact).....10 2-4-3 背對背蕭特基接觸(back-to-back Schottky contact)....11 2-5 光電流特性簡介.....................14 第三章 實驗設計與量測計算 ...........16 3-1 實驗流程...........................16 3-2 特性分析儀器.......................20 3-2-1 X-ray繞射法(X-ray diffraction, XRD)...............20 3-2-2 場發射掃描電子顯微鏡(Field emission scanning electron microscope, FESEM).................................22 3-2-3 霍爾量測(Hall measurement).......23 3-2-4 電容-電壓量測(CV measurement)....28 3-2-5 可見光與近紅外光波段光電流量測...29 3-2-6 光電流下降時間量測...............31 3-2-7 不同環境下光電流量測.............33 第四章 實驗結果與討論................34 4-1 不同溫度及氬氧比例沉積氧化銅/氧化亞銅薄膜 ...........34 4-1-1 X-ray繞射分析 ..................34 4-1-2表面形貌分析 .....................36 4-2電阻率、載子濃度與遷移率分析........38 4-3電流-電壓/電容-電壓量測分析.........40 4-4 光電流分析.........................42 4-4-1 光響應計算.......................45 4-4-2 下降時間.........................46 4-4-3 氣體偵測.........................49 第五章 未來的展望與發展..............51 參考文獻...............................53

[1] L. O. Grondahl, and P. H. Geiger, “A new electronic rectifier,” J. Am. Inst. Electric. Eng., Vol. 46, pp. 215, 1927.
[2] L. O. Grondahl, Resarch Laboratory, Union Switch and Signal Company, Swissvale, Pennsylvania, “The copper-cuprous-oxide rectifier and photoelectric cell,” Rev. Mod. Phys., Vol. 5, pp. 141-168, 1933.
[3] J. R. Ortiz, T. Ogura, J. M. Valtierra, S. E. A. Ortiz, P. Bosch, J. A. D. L. Reyes, and Y. V. H. Lara, “Growth of CuO films on fibreglass by CVD process,” Rev. Soc. Quim. Mx., Vol. 44, Nm. 3, pp.215-218, 2000.
[4] Z. Jiao, F. Chen, R. Su, X. Huang, W. Liu, and J. Liu, “Study on the characteristics of Ag doped CuO-BaTiO3 CO2 sensors,” Sensor, Vol. 2, pp.366-373, 2002.
[5] A. Chowdhuri, V. Gupta, and K. Sreenivas, “Response speed of SnO2-based H2S gas sensors with CuO nanoparticles,” App. Phys. Lett., Vol. 84, pp. 1180-1182, 2004.
[6] J. Liu, X. Huang, G. Ye, W. Liu, Z. Jiao, W. Chao, Z. Zhou, and Z. Yu, “H2S detection sensing characteristic of CuO/SnO2 sensor,” Sensor, Vol. 3, pp. 110-118, 2003.
[7] S. B. Wang, C. H. Hsiao, S. J. Chang, Z. Y. Jiao, S. J. Young, S.C. Hung, B.R. Huang, “ZnO branched nanowires and the p-CuO/n-ZnO heterojunction nanostructured photodetector,” Ieee Trans. Nanotechnol, Vol. 12, pp.263-269, 2013.
[8] J. C. Park, J. Kim, H. Kwon, and H. Song, “Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for Lithiium-ion battery anode materials,” Adv. Mater., Vol. 21, pp.803-807, 2007.
[9] S. Anandan, X. Wen , and S. Yang “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells,” Mater. Chem. Phys., Vol. 93, pp. 35–40, 2005.
[10] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, and T. Sakurai, “Thin film deposition of Cu2O and application for solar cells,” Sol. Energy, Vol. 80, pp.715-722, 2006.
[11] E. Fortnato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Goncalves, S. K. Park, and C. S. Hwang, “Thin-film transistors based on p-type Cu2O thin film produced at room temperature,” Appl. Phys. Lett., Vol. 96, pp. 192102-1-192102-3, 2010.
[12] A. O. Musa, T. Akomolafe, and M. J. Carter, “Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties,” Sol. Energy Mater. Sol. Cells, Vol. 51, pp. 305-316, 1998.
[13] A. H. Jayatissa, K. Guo, and A. C. Jayasuriya, “Fabrication of cuprous and cupric oxide thin films by heat treatment,” Appl. Surf. Sci., Vol. 255, pp. 9474-9479, 2009.
[14] H. C. Lu, C. L. Chu, C. Y. Lai, and Y. H. Wang, “Property variations of direct-current reactive magnetron sputtered copper oxide thin films deposited at different oxygen partial pressures,” Thin Solid Films, Vol. 517, pp. 4408-4412, 2009.
[15] Y. S. Lee, M. T. Winkler, S. C. Siah, R. Brandt, and T. Buonassisi, “Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering,” Appl. Phys. Lett., Vol. 98, pp. 192115-1-199115-3, 2011.

[16] S. Ishizuka, S. Kato, T. Maruyama, and K. Akimoto, “Nitrogen doping into Cu2O thin films deposited by reactive radio-frequency magnetron sputter,” Jpn. J. Appl. Phys., Vol. 40, pp. 2765-2768, 2001.
[17] W. Y. Yang, W. G. Kim, S. W. Rhee, “Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties,” Thin Solid Films, Vol. 517, pp. 967-971, 2008.
[18] T. Ikenoue, S. I. Sakamoto, and Y. Inui, “Fabrication and characteristics of p-type Cu2O thin films by ultrasonic spray-assisted mist CVD method,” Jpn. J. Appl. Phys., Vol. 53, pp. 05FF06-1-05FF06-3, 2014.
[19] T. Mahalingam, J. S. P. Chitra, J. P. Chu, H. Moon, H. J. Kwon, and Y. D. Kim, “Photoelectrochemical solar cell studies on eletroplated cuprous oxide thin films,” J. Mater Sci: Mater Electron, Vol. 17, pp. 519-523, 2006.
[20] L. Wang, and M. Tao, “Fabrication and characterization of p-n homojunctions in cuprous oxide by electrochemical deposition,” Electrochem. Solid-State Lett., Vol. 10, pp. H248-H250, 2007.
[21] Y. Mao, J. He, X. Sun, W. Li, X. Lu, J. Gan, Z. Liu, L. Gong, J. Chen, P. Liu, and Y. Tong, “Electrochemical synthesis if hierarchical Cu2O stars with enhanced photoelectrochemical properties,” Electrrochim. Acta, Vol. 62, pp. 1-7, 2012.
[22] Z. Xi, H. Zeng, N. Liao, L. Shi, H. Huang, S. Guo, N. Wang, D. Jin, L. Wang, “Study on the effect of annealing on the electrical properties of n-type cuprous oxide,” Thin Solid Films, Vol. 520, pp. 2708-2710, 2012.
[23] L. Davis, “Properties of transparent conducting oxides deposited at room temperature,” Thin Solid Films, Vol. 236, p.1, 1993.
[24] H. L. Hartnagel, A.K. Jain and C. Jagadish, “Semiconducting transparent thin films,” Inst. Phys. Pub., Philadelphia, p.181, 1995.
[25] K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic thin film science,” 1992.
[26] M. Ohring, “The materials science of thin films,” Academic Press, Boston, pp.197-224, 1992.
[27] C. C. Lee, J. C. Hsu, D. T. Wei, and J. H. Lin, “Morphology of dual beam ion sputtered films investigated by atomic force microscopy,” Thin Solid Films, Vol. 308-309, pp. 74-78, 1997.
[28] S. M. Kane, and K. Y. Ahn, “Characteristics of ion-beam-sputtered thin films,” J. Vac. Sci. Technol., Vol. 16, No. 2, pp. 171-174, 1979.
[29] S. B. Krupanidhi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, No. 1, pp. 376-388, 1992.
[30] C. C. Lee, D. T. Wei, J. C. Hsu, and C. H. Shen, “Influence of oxygen on some oxide films prepared by ion beam deposition,” Thin Solid Films, Vol. 290-291, pp. 88-93, 1996.
[31] C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 2848-2854, 2011.
[32] M. R. Johan, M. S. M. Suan, N. L. Hawari, and H. A. Ching, “Annealing effects on the properties of copper oxide thin films prepared by chemical deposition,” Int. J. Electrochem. Sci., Vol. 6, pp. 6094-6104, 2011.
[33] J. Ghijsen, L. H. Tjeng, J. V. Elp, H. Eskes, J. Westerink, and G. A. Sawatzky, “Electronic structure of Cu2O and CuO,” Phys. Rev. B, Vol. 38, pp. 322-330, 1988.
[34] J. M. Zuo, M. Kim, M. O’Keeffe, and J. C. K. Spence, “Direct observation of d-orbital holes and Cu-Cu bonding in Cu2O,” Nature, Vol. 401, pp. 49-52, 1999.
[35] ] A. M. B. Goncalves, L. C. Campos, A. S. Ferlauto, and R. G. Lacerda, “On the growth and electrical characterization of CuO nanowires by thermal oxidation,” J. Appl. Phys., Vol. 106, pp. 034303-1-034303-5, 2009.
[36] M. Kaur, K. P. Muthe, S. K. Despande, S. Choudhury, J. B. Singh, N. Verma, S. K. Gupta, and J. V. Yakhmi, “Growth and branching of CuO nanowires by thermal oxidation of copper,” J. Crystal Growth, Vol. 289, pp. 670-675, 2006.
[37] J. T. Chen, F. Zhang, J. Wang, G. A. Zhanh, B. B. Miao, X. Y. Fan, and P. X. Yan, “CuO nanowires synthesized by thermal oxidation route,” J. Alloys Compd., Vol. 454, pp. 268-273, 2008.
[38] C. Malerba, F. Biccari, C. L. A. Ricardo, M. D’Incau, P. Scardi, and A. Mittiga, “Absorption coefficient of bulk and thin film Cu2O,” Sol. Energy Mater. Sol. Cells, Vol. 95, pp. 2848-2854, 2011.
[39] L. C. Olsen, R. C. Bohara, and M. W. Urie, “Explanation for lowefficiency Cu2O schottkybarrier solar cells,” App. Phys. Lett., Vol. 34, pp. 47-49, 1979.
[40] S. B. Wang, C. H. Hsiao, S. J. Chang, K. T. Lam, K. H. Wen, S. C. Hung, S. J. Young, and B. R. Huang, “A CuO nanowire infrared photodetector,” Sensor Actuat. A-Phys., Vol. 171, pp.207-211, 2011.
[41] D. A. Neamen, “Semiconductor physics and device 3th,” 2003.
[42] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” App. Phys. Lett., Vol. 79, pp. 2925-2927, 2001.
[43] H. L. Chen, Y. M. Lu, and W. S. Hwang, “Characterization of sputtered NiO thin films,” Surf. Coat. Technol., Vol. 198, pp. 138-142, 2005.
[44] C. H. Qiu, and J. I. Pankove, “Deep levels and persistent photoconductivity in GaN thin films,” App. Phys. Lett., Vol. 70, pp. 1983-1985, 1997.
[45] S. M. Sze, K. K. Ng, “Physics of semiconductor devices3th,” 2007.
[46] K. W. Liu, J. G. Ma, J. Y. Zhang, Y. M. Lu, D. Y. Jiang, B. H. Li, D. X. Zhao, Z. Z. Zhang, B. Yao, and D. Z. Shen, “Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film,” Solid-State Electron., Vol. 51, pp. 757-761, 2007.

無法下載圖示 全文公開日期 2019/06/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE